• Title/Summary/Keyword: 오디오 특징 벡터 추출

Search Result 21, Processing Time 0.023 seconds

Quick Audio Retrieval Using Multiple Featrue Vector (다중 특징 벡터를 이용한 고속 오디오 검색)

  • Ban Ji-hye;Kim Ki-man;Park Kyu-sik
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.351-354
    • /
    • 2004
  • 최근 MPEG-7 등에서 컨텐츠 내용 기반 검색에 대한 연구가 이루어지고 있다. 내용 기반 검색은 기존의 키워드기반 검색이 아닌 컨텐츠 내의 특징 벡터를 추출하여 이와 일치하는 것을 찾는 작업으로써 차세대 디지털 방송 등에 적응될 예정이다. 본 논문은 긴 오디오 stream에서 찾고자 하는 오디오의 위치를 빨리 찾을 수 있는 고속 검객 방법을 제시한다. 기존의 방법에서는 zero-crossing rate만을 이용하여 검색을 했었으나 본 논문에서는 오디오 신호의 특성을 표현할 수 있는 여러 가지 특징 벡터들을 이용한 고속 검색 방법을 고찰 한다. 본 논문의 가장 중요만 부분은 active search 알고리즘과 히스토그램, 그리고 적절하게 조합된 다중 특징 벡터들을 이용한 오디오 검색의 정확도와 속도를 향상시키는데 있다.

  • PDF

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.

Soundtrack Search System for Interactive-Smart-Television (인터액티브 스마트 TV 적용을 위한 사운드트랙 검색 시스템)

  • Ryu, Sang-Hyeon;Cho, Jea-Man;Kim, Hyoung-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.202-203
    • /
    • 2011
  • 본 논문에서는 인터액티브 스마트 TV 적용을 위한 사운드트랙 검색 시스템을 제안한다. 제안하는 시스템은 동영상을 오디오와 비디오특징을 구분한 후, 각 오디오와 비디오 신호를 분석한다. 비디오 신호의 분석은 MPEG-2 비디오 인코더로부터 영상의 장면전환과 시작과 끝 위치를 검출하고, 오디오 신호의 분석은 AC-3 오디오 인코더로부터 오디오 특징을 추출한 후, 오디오 정보의 비트 벡터를 추출하여 데이터베이스를 생성한다. 생성된 데이터베이스와 사용자가 북마크를 하여 요청한 쿼리와 비교를 통하여 오디오 특징정보가 유사한 부분의 장면을 검색하고, 검색된 장면을 사용자에게 제공한다. 제안된 시스템의 성능 측정을 위해서 뉴스, 패널토론, 음악방송, 광고, 드라마 등 50개 TV 방송 프로그램의 데이터베이스를 이용해서 정확성을 측정하였다.

  • PDF

Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques (서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류)

  • Nguyen, Ngoc;Kang, Myeong-Su;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.

Audio Event Detection Using Deep Neural Networks (깊은 신경망을 이용한 오디오 이벤트 검출)

  • Lim, Minkyu;Lee, Donghyun;Park, Hosung;Kim, Ji-Hwan
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.183-190
    • /
    • 2017
  • This paper proposes an audio event detection method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate output probabilities of twenty audio events for each frame. Mel scale filter bank (FBANK) features are extracted from each frame, and its five consecutive frames are combined as one vector which is the input feature of the FFNN. The output layer of FFNN produces audio event probabilities for each input feature vector. More than five consecutive frames of which event probability exceeds threshold are detected as an audio event. An audio event continues until the event is detected within one second. The proposed method achieves as 71.8% accuracy for 20 classes of the UrbanSound8K and the BBC Sound FX dataset.

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

Pretreatment For The Problem Solution Of Contents-Based Music Retrieval (내용 기반 음악 검색의 문제점 해결을 위한 전처리)

  • Chung, Myoung-Beom;Sung, Bo-Kyung;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.97-104
    • /
    • 2007
  • This paper presents the problem of the feature extraction techniques that has been used a content-based analysis, classification and retrieval in audio data and proposes a course of the preprocessing for a new contents-based retrieval methods. Because the feature vector according to sampling value changes, the existing audio data analysis is problem that same music is appraised by other music. Therefore, we propose waveform information extraction method of PCM data for retrieval audio data of various format to contents-based. If this method is used. we can find that audio datas that get into sampling in various format are same data. And it may be applied in contents-based music retrieval system. To verity the performance of the method, an experiment was done feature extraction using STFT and waveform information extraction using PCM data. As a result, we could know that the method to propose is effective more.

  • PDF

Automatic Equalizer Control Method Using Music Genre Classification in Automobile Audio System (음악 장르 분류를 이용한 자동차 오디오 시스템에서의 이퀄라이저 자동 조절 방식)

  • Kim, Hyoung-Gook;Nam, Sang-Soon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.33-38
    • /
    • 2009
  • This paper proposes an automatic equalizer control method in automobile audio system. The proposed method discriminates the music segment from the consecutive real-time audio stream of the radio and the equalizer is controlled automatically according to the classified genre of the music segment. For enhancing the accuracy of the music genre classification in real-time, timbre feature and rhythm feature extracted from the consecutive audio stream is applied to GMM(Gaussian mixture model) classifier. The proposed method evaluates the performance of the music genre classification, which classified various audio segments segmented from the audio signal of the radio broadcast in automobile audio system into one of five music genres.

  • PDF

Content Based Classification of Audio Signal using Discriminant Function (식별함수를 이용한 오디오신호의 내용기반 분류)

  • Kim, Young-Sub;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.201-204
    • /
    • 2007
  • In this paper, we research the content-based analysis and classification according to the composition of the feature parameters pool for the auditory signals to implement the auditory indexing and searching system. Auditory data is classified to the primitive various auditory types. we described the analysis and feature extraction method for the feature parameters available to the auditory data classification. And we compose the feature parameters pool in the indexing group unit, then compare and analysis the auditory data centering around the including level and indexing criterion into the audio categories. Based on this result, we composit feature vectors of audio data according to the classification categories, then experiment the classification using discrimination function.

  • PDF

Audio-Visual Integration based Multi-modal Speech Recognition System (오디오-비디오 정보 융합을 통한 멀티 모달 음성 인식 시스템)

  • Lee, Sahng-Woon;Lee, Yeon-Chul;Hong, Hun-Sop;Yun, Bo-Hyun;Han, Mun-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.707-710
    • /
    • 2002
  • 본 논문은 오디오와 비디오 정보의 융합을 통한 멀티 모달 음성 인식 시스템을 제안한다. 음성 특징 정보와 영상 정보 특징의 융합을 통하여 잡음이 많은 환경에서 효율적으로 사람의 음성을 인식하는 시스템을 제안한다. 음성 특징 정보는 멜 필터 캡스트럼 계수(Mel Frequency Cepstrum Coefficients: MFCC)를 사용하며, 영상 특징 정보는 주성분 분석을 통해 얻어진 특징 벡터를 사용한다. 또한, 영상 정보 자체의 인식률 향상을 위해 피부 색깔 모델과 얼굴의 형태 정보를 이용하여 얼굴 영역을 찾은 후 강력한 입술 영역 추출 방법을 통해 입술 영역을 검출한다. 음성-영상 융합은 변형된 시간 지연 신경 회로망을 사용하여 초기 융합을 통해 이루어진다. 실험을 통해 음성과 영상의 정보 융합이 음성 정보만을 사용한 것 보다 대략 5%-20%의 성능 향상을 보여주고 있다.

  • PDF