• Title/Summary/Keyword: 예 혼합 화염

Search Result 312, Processing Time 0.027 seconds

A Study on the Effects of Reynolds Number and Damkohler Number in the Structure of Premixed Turbulent Flames (예혼합 난류화염구조에 미치는 레이놀즈 수와 담퀠러 수의 영향에 관한 연구)

  • 김준효;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-41
    • /
    • 1995
  • The structure of premixed tubulent flames in a constant-volume vessel was investigated using a schlieren method and microprobe method. The schlieren method was used to observe the flame structure qualitatively. The microprobe method, which detects a flamelet by detecting its flame potential signal, was used to investigate the deeper flame structure behind the flame front. The flame potential signal having one to six peaks was obtained in the case of turbulent flames, each of them being regarede as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. Moreover, the thickness of flamelet which could not be attempted in the conventional electrostatic probe method was also investigated. The experimental results of this work suggest the existence of "reactant islands" in the reaction zone, and show that the averaged number of flamelets increases with an increase in the turbulence intensity and/or a decrease in the Damkohler number. The mean thickness of flamelet in the case of turbulent flames was found to be about two times compared to laminar values.ar values.

  • PDF

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed CH4/Air Flames: Effects of Fuel Split Percentage and Mixing Distance (메탄/공기 층류 부분예혼합화염의 화염구조와 NOx 배출특성 : 연료분배율과 혼합거리의 영향)

  • Jeong, Yong-Ki;Lee, Jong-Ho;Lee, Suk-Young;Jeon, Chung-Hwan;Chan, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.818-825
    • /
    • 2004
  • In this paper, the study of effects of flow parameters on flame structure and NOx emission concentration was performed in co-axial. laminar partially premixed methane/air flames. Such (low parameters as equivalence ratio(${\Phi}$), fuel split percentage($\sigma$), and mixing distance(x/D$\_$i/) were defined as a premixing degree and varied within ${\Phi}$=1.36∼9.52, $\sigma$=50∼100, and x/D$\_$i/=5∼20. The image of OH$\^$*/ and NOx concentration were obtained with an ICCD camera and a NOx analyzer. The flame structure observations show a categorization of partially premixed flames into three distinct flame regimes corresponding to ${\Phi}$<1.7(premixed flame structure), 1.7<${\Phi}$<3.3(hybrid structure), and ${\Phi}$>3.3(diffusion flame structure existing a luminous sooting region) at $\sigma$=75%, and x/D$\_$i/=10. As o decreases from 100% to 50%, and x/D$\_$i/ decreases, nonpremixed flame structure appear at low equivalence ratio relatively. In addition, the measured emissions for NOx rise steeply from ${\Phi}$=1.7, to ${\Phi}$=3.3, then constants ${\Phi}$>4.76. NOx emissions decrease with increase the level of premixing level. In conclusion, the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split percentage($\sigma$), and finally mixing distance(x/D$\_$i/).

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Basic Experimental Study of the Edge-Flame Intensity Variation at High Temperature and with Small Fuel-Concentration Gradient (고온 미소농도구배 조건에서의 에지화염 강도 변화에 관한 실험적 기초 연구)

  • Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.633-640
    • /
    • 2011
  • In this study, the stabilization of an edge flame and the intensity variation of a diffusion branch were investigated using a multi-slot combustor under conditions of high temperature and small fuel-concentration gradient (FCG). The combustor consists of three narrow channels: a quartz channel and two side-heating combustors. For the accuracy of this experimental study, quantitative analysis was carried out for each boundary condition. Stable edge flames could be observed under high-temperature conditions by controlling the FCG and fuel dilution ratio. Moreover, it was found that the intensity of the diffusion flame was increased by increasing the temperature of the mixture. On the contrary, the intensity of the diffusion flame was decreased by increasing the dilution ratio. It was also found that a propane flame is more sensitively affected by these experimental parameters than a methane flame.

Influence of Flame Instabilities on Propagation Characteristics of Stagnating Turbulent Premixed Flames (화염 불안정성이 난류 예혼합 화염의 전파 특성에 미치는 영향에 관한 연구)

  • Kwon, Jaesung;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.287-288
    • /
    • 2012
  • DNS is performed to examine the propagation characteristics of stagnating turbulent premixed flames. Results show good agreement with the recently proposed relationship for turbulent burning velocity, $S_T$. It is shown that $S_T$ increases through a thinner flamelet, turbulence production and correlation between fluctuating velocity and buoyancy force respectively for diffusive-thermal, hydrodynamic and Rayleigh-Taylor instability. The mean curvature doesn't have significant effect on $S_T$ at the leading edge.

  • PDF

Combustion Flame Diagnostics Using Laser-Induced Fluorescence (레이저 유도 형광법에 의한 연소화염 진단기법 연구)

  • Kim, T.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.24-29
    • /
    • 1995
  • A laser system and signal aquisition system to use a laser-induced fluorescence technique were arranged to measure NO concentration. To identify the NO fluorescence signal, verification of the fluorescence was performed through use of comparison of the signals taken both in a undoped and doped calibration flames. Finally, the spatial NO number densities in partially premixed flames were found as a function of fuel-tube equivalence ratio(${\phi}_c$) and overall equivalence ratio(${\phi}_o$).

  • PDF

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.187-199
    • /
    • 2011
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The multi-channel dynamic pressure transducers were located on the combustor and inlet mixing section region to observe combustion pressure oscillation and difference phase at each dynamic pressure measurement results. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of coupled with the combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

  • PDF

An Experimental Study on Combustion Instability Characteristics of Various Fuel-Air Mixing Section Geometry in a Model Dump Shape Combustor (모형 덤프 연소기에서 혼합기 유입구 길이 변화에 따른 연소불안정 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Yoon, Ji-Su;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • The main objective of this study was investigation of natural gas flames in a lean premixed swirl-stabilized dump combustor with an attention focused on the effect of the various fuel-air mixing section geometry on the combustion instability characteristics. The combustor and mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1800 mm in combustor and 470, 550, 870 mm in mixing section. We observed two dominant instability frequencies in this study. Lower frequencies were associated with a fundamental longitudinal mode of combustor length. Higher frequencies were related to secondary longitudinal mode of coupled with the combustor and mixing section. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

A study of turbulent premixed flame structure in a plane shear layer (평면전단층의 난류예혼합 화염의 구조에 관한 실험적 연구)

  • 이재득;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1989
  • A turbulent premixed flames of layer formed between burned hot gas and unburned mixture were investigated by means of schlieren photograph with fluctuations of temperature and ion current. The combustion intensity between burned hot gas and shear layer was higher than the intensity between unburned mixture and shear layer. A wrinkled laminar flame and flamelet were appeared at downstream to exist and distributed reaction zone was at upstream as a result of analyzed probability density functions of temperature fluctuation. The initial combustion intensity of reaction zone of eddy between burned hot gas and shear layer was higher than that of final, flowing downstream, and vice versa between unburned mixture and shear layer.

  • PDF

Flame Structure of Fuel-rich $CH_4/O_2/N_2$ Premixed Flame with Oxygen Enrichment (과농 조건에서 산소부화된 $CH_4/O_2/N_2$ 예혼합화염의 화염구조)

  • Lee, Ki-Yong;Kwon, Young-Suk
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • Numerical simulations are conducted at atmospheric pressure in order to understand the effect of the oxygen enrichment level on structure of $CH_4/O_2/N_2$ premixed flames. Under several equivalence ratios the flame speeds are calculated and compared with those obtained from the experiments, the results of which are in good agreement. The effects of the oxygen enrichment are investigated on flames under fuel-rich conditions. As the oxygen enrichment level is increased from 0.21 to 1, the flame speed and the temperature are increased. The emission index of $CO_2$ is decreased in cases of flames for fuel rich mixtures, so the efficiency of combustion may be decreased. The maximum emission index of NO is obtained for 0.6 of the oxygen enrichment level.

  • PDF