Prediction of travel time on road network is one of crucial research issue in dynamic route guidance system. A new approach based on Rule-Based classification is proposed for predicting travel time. This approach departs from many existing prediction models in that it explicitly consider traffic patterns during day time as well as week day. We can predict travel time accurately by considering both traffic condition of time range in a day and traffic patterns of vehicles in a week. We compare the proposed method with the existing prediction models like Link-based, Micro-T* and Switching model. It is also revealed that proposed method can reduce MARE (mean absolute relative error) significantly, compared with the existing predictors.
Jo, Won-Beom;Kim, Yong-Seok;Choe, Jae-Seong;Kim, Sang-Yeop;Kim, Jin-Guk
Journal of Korean Society of Transportation
/
v.28
no.5
/
pp.141-153
/
2010
The study is about the development of operating speed prediction models aimed for an evaluation of design consistency of four lane rural roads. The main differences of this study relative to previous research are the method of data collection and classification of road alignments. The previous studies collected speed data at several points in the horizontal curve and approaching tangent. This method of collection is based on the assumption that acceleration and deceleration only occurs at horizontal tangents and the speed is kept constant at horizontal curves. However, this assumption leads to an unreliable speed estimation, so drivers' behavior is not well represented. Contrary to the previous approach, speed data were collected with one and data analysis using a speed profile is made for data selection before building final models. A total of six speed prediction models were made according to the combination of horizontal and vertical alignments. The study predicts that the speed data analysis and selection for model building employed in this study can improve the prediction accuracy of models and be useful to analyze drivers' speed behavior in a more detailed way. Furthermore, it is expected that the operating speed prediction models can help complement the current design-speed-based guidelines, so more benefits to drivers as real road users, rather than engineers or decision makers, can be achieved.
Journal of Korea Spatial Information System Society
/
v.10
no.3
/
pp.31-43
/
2008
Travel time prediction is an indispensable to many advanced traveler information systems(ATIS) and intelligent transportation systems(ITS). In this paper we propose a method to predict travel time using $Na{\ddot{i}}ve$ Bayesian classification method which has exhibited high accuracy and processing speed when applied to classily large amounts of data. Our proposed prediction algorithm is also scalable to road networks with arbitrary travel routes. For a given route, we consider time-varying average segment velocity to perform more accuracy of travel time prediction. We compare the proposed method with the existing prediction algorithms like link-based prediction algorithm [1] and Micro T* algorithm [2]. It is shown from the performance comparison that the proposed predictor can reduce MARE (mean absolute relative error) significantly, compared with the existing predictors.
The road should be designed in the consistent alignment which the driver can drive safely. Also, proper highway environments in order to maintain optimal operational speeds on highway sections should be provided In design stage, for highway environments, it is essential for an operational speed estimation model to different highway environments. If a method which could evaluate the status of the road safety is developed through this operational speed estimation model, it is possible to provide safe and more comfortable highways to road users. In the study factors to effect on operational speeds are classified into three groups horizontal & vertical alignments and traffic operation characteristic factors. Factors are chosen to effect on operational speeds by using collation analysis as classifications of tangent sections, horizontal curve sections and vertical curve sections. In order to develop operational speed estimation models in express highways, multi-regression analysis has been used in this study using the selected factors. This study has meaning that the developed estimation models for operational speeds and evaluation of degree of safety to horizontal and vortical alignments simultaneous. In order to represent whole area of the country with the developed models, the models should be re-analyzed with vast data related with road alignment factors in the near future.
Kim, Jang-Uk;Jang, Il-Jun;Kim, Jeong-Hyeon;Lee, Su-Beom
Journal of Korean Society of Transportation
/
v.27
no.2
/
pp.117-131
/
2009
When most drivers take to the freeway, they don't necessarily pay attention to the geometric design. They expect proper design by depending on their own senses and recognition. When they evaluate the features of traveling on the freeway, they can think differently than engineers. The design needs to predict the exact speed of the driver to satisfy the driver's expectation, safety, pleasure and so on. This study categorized the factors influencing the speed of six freeways considering geometric and operational features to make a prediction model of speed. The model used multiple regression with these factors and produced statically appropriate results. This study utilized the principle component analysis and the quantification II analysis based on the image data of the satisfaction of the traveling environment collected through individual interviews. As a result, this study found the factors of satisfaction in a traveling environment. It made a satisfaction model of the traveling environment on freeways considering the change of driver's actual recognition and societal recognition using structural equations and the quantification II theory. Through the model made in this study, This model can present not only qualitative factors like satisfaction of traveling environment on freeways, but also the quantitative elements like speed. What is important is the evaluation of features of traveling on freeways reflected in the recognition and traffic environment felt by drivers.
여기서는 차량의 구동 성능을 예측하기 위하여 대우자동차에서 최근에 개발한 프로그램에 대하여 설명하고자 한다. 이 프로그램의 특징으로는 기능의 다양화 및 사용의 편리함을 들 수 있다. 이 프로그램은 수동 및 자동 변속기 장착 차량의 가속 성능과 연비를 예측할 수 있게 하였다. 정속 주행 시험과 같이 일정 속도의 주행 상태와, 가속 성능 시험에서와 같이 정해진 드로틀개도 변화에 따르는 주행 상태뿐 아니라, LA-4모두, Tokyo-10모드와 같이 시간에 따라 변화하는 속 도에 따른 주행 상태의 시뮬레이션도 가능하게 하였다. 주행 저항 계산방법으로는 풍동시험을 이용한 방법뿐 아니라 타행 (Coastdown) 시험을 이용하는 방법을 추가하였다. 예측 결과의 정 확도에 별로 영향을 주지않는 부분은 단순화시켜 모델링함으로써 입력 데이터 수를 작게 하였고 이로 인하여 사용자의 편리성을 높게 하였다.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.291-294
/
2000
Analysis of the contribution of each pass-by noise source to the overall pass-by noise is an important issue for reduction of pass-by noise. A technical approach for predicting tailpipe noise is used to identify the contribution of tailpipe noise to the pass-by noise in this study. Simulation program with a time domain engine modeling program called 'WAVE' and wave propagation theory of moving noise source are employed. Since the Doppler phenomenon causes a frequency shift during a pass-by noise test, the Doppler correction and time delay effects are incorporated into the estimation of tailpipe noise. The developed program can furnish an in-depth understanding of the effect of tailpipe to pass-by noise.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
1995.10a
/
pp.111-115
/
1995
철도소음의 전파예측을 위한 예측모델의 작성에 매우 중요한 요소가 되는 주행열차로부터의 소음방사특성에 대하여 음향인텐시티법을 이용하여 검토하였다. 그리고 검토결과를 근거로 하여 평탄지 선로를 주행하는 열차를 유한길이의 지향성 점음원열로 가정하고, 지향성계수별(n)로 소음레벨을 구하여 실측치와의 대응성에 대하여 검토하였다. 또한 모터차량이 소음발생에 미치는 영향에 대해서도 검토하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.11a
/
pp.143-144
/
2019
자율 주행 차량의 상용화를 위해서는 차량의 정교한 위치 추정이 필수적이다 특히 실내공간의 경우 다중 경로 등 복잡한 경로를 주행 중인 차량의 위치를 추적해야 한다. 이 경우 정밀한 위치 추정을 위해 이동체가 주행하는 경로를 정확히 판별하는 것이 필수적이다. 본 논문에서는 다중 경로가 존재하는 복잡한 실내공간을 주행하는 이동체의 경로 추정을 위해 딥러닝 기법을 이용한다. 특히 딥러닝 기법이 주행 차량의 영상 정보를 활용하는 방식을 기술한다. 본 논문에서 딥러닝 방식은 주행 차량의 영상 정보를 이용하여 이동체가 주행하게 될 경로를 예측한다. 모의실험은 적용된 딥러닝 방식이 이동체의 주행 경로를 정확하게 예측함을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.798-801
/
2014
여행 정보 시스템(ATIS), 교통 관리 시스템 (ITS) 등 궤적 기반 서비스에서, 서비스 품질을 향상시키기 위해서는 주어진 궤적 질의에 대한 정확한 주행시간을 예측하는 것이 필수적이다. 이를 위한 대표적인 공간 데이터 분석 기법으로는 데이터 분류에서 높은 정확도를 보장하는 규칙 기반 분류화 기법이 존재한다. 그러나 기존 규칙 기반 분류화 기법은 단일 컴퓨터 환경만을 고려하기 때문에, 대용량 공간 데이터 처리에 적합하지 않은 문제점이 존재한다. 이를 해결하기 위해, 본 연구에서는 맵리듀스 환경에서 규칙 기반 분류화를 이용한 궤적 데이터 주행 시간 예측 알고리즘을 개발하고자 한다. 제안하는 알고리즘은 첫째, 맵리듀스를 이용하여 대용량 공간 데이터를 병렬적으로 분석함으로써, 활용도 높은 궤적 데이터 규칙을 생성한다. 이를 통해 대용량 공간 데이터 기반의 규칙 생성 시간을 감소시킨다. 둘째, 그리드 구조 기반의 지도 데이터 분할을 통해, 사용자 질의처리 시 탐색 성능을 향상시킨다. 즉, 주행 시간 예측을 위한 규칙 그룹을 탐색 시 질의를 포함하는 그리드 셀만을 탐색하기 때문에, 질의처리 성능이 향상된다. 마지막으로 맵리듀스 구조에 적합한 질의처리 알고리즘을 설계하여, 효율적인 병렬 질의처리를 지원한다. 이를 위해 맵 함수에서는 선정된 그리드 셀에 대해, 질의에 포함된 도로 구간에서의 주행 시간을 병렬적으로 측정한다. 아울러 리듀스 함수에서는 출발 시간 및 구간별 주행 시간을 바탕으로 맵 함수의 결과를 병합함으로써, 최종 결과를 생성한다. 이를 통해 공간 빅데이터 분석을 통한 주행 시간 예측 기법의 처리 시간 및 결과 정확도를 향상시킨다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.