• 제목/요약/키워드: 예측정확도 비교

검색결과 1,150건 처리시간 0.027초

EPRI-FLASH 및 CRIEPI-LORP를 이용한 송전선로의 뇌사고율 예측계산 비교 (The Comparison of the Calculations for the Lightning Outage Hate of Transmission Line Using the EPRI-Flash program and CRIEPI-LORP Program)

  • 강연욱;곽주식;우정욱;권동진;심응보;정길조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1635-1637
    • /
    • 2003
  • 송전선의 뇌사고율은 뇌방전 현상, 송전선의 써지 전달 현상, 아킹혼 사이의 섬락 현상 등 다양한 현상이 관련된다. 송전선의 내뢰설계 목표는 이러한 자연현상 및 물리적인 현상이 편차를 포함하고 있다는 것을 인식하고, 가능한 한 정확도가 높은 뇌사고율을 예측을 수행하고 허용 가능한 뇌사고율을 산정하여 송전선로 설계시 반영하는 것이다. 이러한 예측 계산을 위해 한전에서는 EPRI에서 개발한 FLASH 프로그램을 기본으로 사용해 왔으며, 이 예측계산법의 타당성은 예측 사고율과 사고 실적과의 비교에 의해 검토되어야 한다. 한전에서는 과거 10년간의 뇌사고 실적과 FLASH 프로그램으로 계산한 예측 사고율이 차이가 많이 나타나고 있어, FLASH 프로그램의 예측 계산법의 타당성에 의문을 제기하고 있는 상황이다. 일본 전력회사들은 뇌사고율을 예측 계산하기 위하여 1988년에 전력중앙연구소에서 개발한 프로그램을 사용하여 왔으며, 최근에 사고 실적과의 비교 및 관련 연구를 수행하여 예측 계산 프로그램에 사용되는 파라메타를 수정 보완한 LORP2000-1을 완성하였다. 본 논문에서는 지리, 기후적으로 한국과 유사한 일본의 자연현상을 반영한 LORP 프로그램의 예측계산법이 한전 송전선로의 뇌사고율 예측 계산에 적용 가능성을 사고 실적과의 비교를 통해 검토하였다.

  • PDF

풍력단지개발 예비타당성 평가를 위한 모델의 WRF 풍황자원 예측 정확도 검증 (Verification of the Validity of WRF Model for Wind Resource Assessment in Wind Farm Pre-feasibility Studies)

  • 허수영;김범석;허종철
    • 대한기계학회논문집B
    • /
    • 제39권9호
    • /
    • pp.735-742
    • /
    • 2015
  • 본 논문에서는 국지적 기상현상의 모사가 가능하고 AWS, 기상탑, 또는 위성자료의 입력이 필요치 않은 WRF 기상수치모델을 이용하여, 풍력단지의 풍황자원 예측정확도 및 적용타당성을 비교 검증하고자 한다. 풍력단지개발 예비타당성단계에서 요구되는 풍황자원 예측을 위한 WRF 모델의 적용타당성 검증을 위해, 기상탑 풍황측정자료와 WAsP에 의한 풍황자원 예측결과와의 비교 검증을 수행하였고 제주도 북서쪽에 위치한 평대와 우도사이트를 비교 검증용 사이트로 선정하였다. 연 월평균풍속, 와이블분포, 연간발전량 및 바람장미의 예측결과가 실측자료와 비교 검증되었고 WRF 모델의 풍황해석결과는 WAsP의 결과에 비해 높은 예측 정확도를 나타내었다. 풍력단지개발 예비타당성 평가를 위한 WRF 모델의 풍황자원 예측가능성이 최종적으로 확인되었다.

유비쿼터스 컴퓨팅 환경에서 컨텍스트 예측을 위한 시계열 분석 기반 사용자 모델링 (User Modeling based Time-Series Analysis for Context Prediction in Ubiquitous Computing Environment)

  • 최영환;이상용
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.655-660
    • /
    • 2009
  • 기존의 예측 알고리즘들은 실시간 환경에서 학습 데이터 처리에서 오는 시간지연 문제, 구현의 어려움 등으로 개인화된 실시간 서비스를 제공하는 컨텍스트 인식 환경에서 사용하기에 적합하지 않다. 본 논문에서는 사용자 모델을 이용하여 컨텍스트 예측 알고리즘의 처리시간 단축과 예측 정확도를 향상시키기 위한 연구를 제안한다. 컨텍스트 예측을 위하여 사용자의 컨텍스트 중에서 이동경로를 사용한다. 이동경로를 기반으로 시계열 분석 방법을 통하여 사용자 모델을 생성하고, 생성된 사용자 모델을 시퀀스 매칭 방법을 이용하여 사용자의 컨텍스트를 예측한다. 기존 예측 알고리즘과 본 연구에서 제안한 예측 알고리즘을 시뮬레이션을 통하여 처리시간 및 예측 정확도를 비교한 결과, 실시간 서비스 환경에서 예측 정확도는 기존 예측 알고리즘들과 비슷한 결과를 보였고, 처리시간은 사용자 모델을 사용한 경우가 시퀀스 매칭을 사용한 경우보다 평균 40% 정도 감소시킬 수 있음을 알 수 있었다.

연속형 모의 기반의 딥러닝 모델을 활용한 댐 유입량 예측 및 평가 (Dam Inflow Prediction using Deep Learning Model based on Continuous Simulation)

  • 허재영;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.122-122
    • /
    • 2021
  • 전 세계적인 기후변화로 인해 태풍과 집중호우의 빈도와 규모가 증가하고 있으며 그로 인해 수재해 대응과 수자원 관리에 많은 어려움이 따른다. 댐 운영은 이러한 수자원 관리의 중요한 요소이며 정확한 댐 유입량의 예측은 효율적인 댐 운영과 관리의 필수적인 부분이다. 최근에는 여러 분야에서 활용되고 있는 딥러닝 모델을 활용하여 댐 유입량 예측에 관한 다수의 연구들이 수행되고 있다. 특히, 수문 시계열의 장기적인 특성과 비선형적인 관계를 고려하기 위해 연속형 모의를 기반으로 하는 딥러닝 모델의 적용 및 평가와 관련 연구의 필요성이 대두되고 있다. 본 연구에서는 연속형 모의를 기반으로 하는 딥러닝 모델을 활용하여 댐 유입량 예측을 수행하고자 하며 이의 적용성을 평가하고자 한다. 적용 대상 지역으로는 안동댐 상류 유역을 선정하였으며 2006년부터 2020년까지의 시 단위 강우 및 댐 유입량 자료를 활용하였다. 선행시간(1~6시간)별 예측 유입량과 관측 유입량의 비교를 통한 정량적 평가를 수행하였다. 또한 입력 자료에 대한 과거 기간, 모델 구성, 손실함수 등에 대한 조건별 평가를 통해 예측 정확도의 변화에 대한 분석을 수행하였다. 본 연구결과를 통해, 딥러닝 기반의 댐 유입량 예측 정확도에 대한 향상과 실시간 예측을 위한 딥러닝 모델의 활용성 증대에 기여할 것으로 기대된다. 향후, 강우 예보 자료를 연계한 딥러닝 기반의 실시간 댐 유입량 예측 기법을 제안하고 이의 활용성을 평가하고자 한다.

  • PDF

이중 함수 복귀 스택의 활용을 통한 간접 분기 명령어의 예측 정확도 향상 기법 (The Enhancement of Indirect Branch Prediction Accuracy via Double Return Address Stack)

  • 곽종욱;김주환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.494-497
    • /
    • 2011
  • 함수 복귀 예측은 이론적으로 오버플로가 발생하지 않는 한도 내에서 100%의 정확도를 보여야 한다. 하지만, 투기적 실행을 지원하는 현대 마이크로프로세서 환경 하에서는 잘못된 실행 경로로의 수행 결과를 무효화 할 때 RAS의 오염이 발생하며, 이는 함수 복귀 주소의 예측 실패로 이어진다. 본 논문에서는 이러한 RAS의 오염을 방지하기 위하여 RAS 재명명 기법을 제안한다. RAS 재명명 기법은 RAS의 스택을 소프트 스택과 하드 스택으로 나누어 관리한다. 소프트 스택은 투기적 실행에 의한 데이터의 변경을 복구할 수 있는 항목을 관리하고, 하드 스택은 소프트 스택의 크기 제한으로 겹쳐쓰기가 일어나는 데이터 가운데 이후에 재사용될 데이터를 관리하는 구조로 구성된다. 제안된 기법을 모의실험 한 결과, RAS 오염방지 기법이 적용되지 않은 시스템과 비교하여 함수 복귀 예측 실패를 약 1/90로 감소시켰으며, 최대 6.95%의 IPC 향상을 가져왔다.

단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델 (Deep Neural Network Model For Short-term Electric Peak Load Forecasting)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제9권5호
    • /
    • pp.1-6
    • /
    • 2018
  • 스마트그리드에서 정확한 단기 부하 예측을 통한 자원의 이용 계획은 에너지 시스템 운영의 불확실성을 줄이고 운영 효율을 높이는데 있어서 매우 중요하다. 단기 부하 예측에 얕은 신경회로망을 포함한 다수의 머신 러닝 기법이 적용되어왔지만 예측 정확도의 개선이 요구되고 있다. 최근에는 컴퓨터 비전이나 음성인식 분야에서 심층 신경회로망의 뛰어난 연구 결과로 인해 심층 신경회로망을 단기 전력수요 예측에 적용해 예측 정확도를 개선하려는 시도가 주목 받고 있다. 본 논문에서는 일별 전력 부하 첨두치를 예측하기 위한 다층신경회로망 구조의 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 층별 학습이 선행된 후 전체 모델의 학습이 이루어진다. 한국전력거래소에서 얻은 4년 동안의 일별 전력 수요 데이터를 사용, 하루 및 이틀 앞선 전력수요 첨두치를 예측하는 심층 신경회로망 모델을 구축하고 예측 정확도를 비교, 평가한다.

PM10 예측 성능 향상을 위한 농도별 예측 모델 설계 (Prediction Model Design by Concentration Type for Improving PM10 Prediction Performance)

  • 조경우;정용진;오창헌
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.576-581
    • /
    • 2021
  • 고농도의 경우 저농도와 비교하였을 때, 발생 빈도수의 차이와 발생 환경에 대한 차이로 예측 성능의 한계를 두드러지게 보이고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 인공신경망 알고리즘을 이용하여 저농도와 고농도로 분류하고 구분된 농도별로 특성을 학습시킨 두 가지 예측 모델을 통해 예측을 수행하는 모델을 제안하였다. 저농도와 고농도를 분류하기 위해 DNN 기반의 분류 모델을 설계하고 분류모델을 통해 구분된 저농도와 고농도를 기준으로 농도별 특성을 반영하기 위한 저농도 예측 모델과 고농도 예측 모델을 설계하였다. 농도별 예측 모델의 성능 평가 결과, 저농도 예측 정확도가 90.38%, 고농도 예측 정확도는 96.37% 의 예측 정확도를 보였다.

인천 청라지역의 연약지반 개량공법에 따른 지반개량효과 및 침하분석 (Settlement Analysis for Improvement Effect of Soft Ground Method in Incheon Cheongna Site)

  • 공진영;김흥남;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.19-26
    • /
    • 2012
  • 본 연구에서는 연약지반 중 선행하중재하 공법을 적용한 6개 지역과 연직배수 공법을 적용한 6개 지역을 대상으로 압밀침하 특성을 비교하였다. Asaoka방법, 쌍곡선방법, Hoshino방법의 장래 예측 침하량 기법을 이용하여 압밀침하량을 예측하고, 실제 계측 침하량과 비교하였으며, 종합적으로 Asaoka방법에 의해 예측된 장래침하량이 쌍곡선방법이나 Hoshino방법에 비해 예측 정확도가 높게 평가되었다. 연직배수공법을 적용한 지역에서는 Asaoka방법이 침하량 예측 정확도가 다른 방법에 비해 높게 평가된다고 알려진 것과는 다르게 세 방법 모두 비슷한 정확도를 나타내었다. 또한 연구대상지역의 지반개량 전후의 확인조사를 통해 N치의 변화, 토층의 물리적, 역학적 특성을 조사하였으며, 개량 후 물성치는 개선되고, 침하량 크기와 관계되는 역학적 특성들은 개선되었다. 또한, 토질의 강도는 증가한 것을 확인하였으며, 침하량과 관계되는 물성치의 변화가 큰 것으로 나타났다.

산지사면에서 측정된 일단위 토양수분 시계열 자료의 모델링 (Soil Moisture Time Series Modeling for Daily Measured at a Steep Relief Measured in a Mountainous Hillside)

  • 정주연;김상현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.462-462
    • /
    • 2015
  • 이 논문에서는 시 공간적 토양수분 변화를 파악하기 위해 다년간 축적된 실측 토양수분 데이터를 이용하여 단변량 시계열 분석을 하였다. 지형에 따른 토양수분 변화를 알아보기 위해 경기도 파주에 위치한 설마천 유역의 산지사면 중 한 단면을 선정하였으며, 깊이에 따른 변동성은 깊이 10cm와 30cm에서 측정한 토양수분 데이터를 이용하여 분석하였다. 또한, 연도별 토양수분의 변화를 파악하고 토양수분을 예측하기 위해 2010-2013년의 토양수분 데이터를 일단위로 단변량 모델링을 시도하였다. 그 결과, 연도별 변화에 따른 경향성은 보이지 않았으며 대부분의 지점에서 ARMA(1, 1) 또는 ARMA(1, 0) 모형으로 모의되었다. 2시간 간격의 1-2개월 단기간 토양수분 데이터를 모의한 선행연구와 달리 본 연구에서는 낮은 차수의 모형을 보였다. 지형적 토양수분 거동을 살펴보면 상부사면에 위치하고 있는 지점에서는 모두 ARMA(1, 1)로 표현되지만 하부사면에 위치한 지점들은 연도나 심도에 따라 ARMA(1, 0)으로 모의된다. 단변량 모형의 정확도를 알아보기 위해 R2와 RMSE를 비교하였다. 10cm 깊이에서는 경향성을 보이지 않으나, 30cm 깊이에서는 사면하부로 갈수록 R2는 작아지고 RMSE는 커져, 하부사면에서의 모델링이 상부사면에 비해 정확도가 낮음을 보였다. 또한 2012년 토양수분 자료를 이용하여 2013년 토양수분을 예측하기 위해 2012년 매개변수와 2013년 전일 데이터를 이용하여 예측하고자 하는 일단위 토양수분을 구하였다. 그 결과 $R^2=0.646-0.807$, RMSE=1.758-4.802의 정확도를 나타냈다.

  • PDF

센서 네트워크에서 에너지 효율적 목표 추적 방법의 비교 (The Comparisons Between Energy Effective Target Tracking Methods in Wireless Sensor Network)

  • 오승현
    • 한국멀티미디어학회논문지
    • /
    • 제10권1호
    • /
    • pp.139-146
    • /
    • 2007
  • Wireless Sensor network를 이용하여 객체를 추적하는 방법에 대해 많은 연구가 진행되어 왔다. 본 연구는 객체 추적에 사용되는 방법에 따라 에너지의 양과 추적의 정확도 사이에 존재하는 상관관계를 관찰하고, 움직임 예측 방법에서 에너지 소비량을 최소화할 수 있음을 확인하였다. 추적에 사용되는 에너지는 센서노드가 객체를 감지하기 위해 소모하는 것이며, 추적의 정확도는 객체의 실제위치와 감지에 의해 계산된 위치의 차이이다. 몇 가지 추적방법과 파라미터의 조절에 따라 추적의 정확도와 소비되는 에너지의 양에 차이가 있고, 움직임 예측 알고리즘을 사용할 때 가장 좋은 에너지 효율을 얻을 수 있었다. 또한 가속도를 고려한 움직임 예측 알고리즘의 개선을 통해 더 나은 정확도와 에너지 효율을 기록하였다. 시뮬레이션 결과 움직임 예측 알고리즘에서 목표의 미래위치에 따라 노드를 활성화시키는 범위는 예측 알고리즘이 정확할 경우 센서 노드의 감지범위 정도로 제한하는 것이 유리함을 알 수 있었다.

  • PDF