It is generally assumed about trip distribution estimation model that growth factor model's estimation accuracy is higher than that of other models in short-term and that gravity model's estimation accuracy is higher than that of other models in long-term. For validation of such assumptions, this study compares estimation accuracies of each estimation model using 3year(1988, 1992, 2004) O-D tables from Daegu city. Each estimation model's accuracy were compared by mid-size and large-size zone as well as short-term and long-term target years. The results show that the trip distribution estimation model selection by usual assumption is not always right.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.10
no.6
/
pp.137-143
/
2010
A method for improving prediction accuracy through processing time series data has been studied in this research. We have designed techniques to model multiple similar time series data and avoided the shortcomings of single prediction model. We predicted the future changes by effective rules derived from these models. The methods for testing prediction accuracy consists of three types: fixed interval, sliding, and cumulative method. Among the three, cumulative method produced the highest accuracy.
In Korea, telephone surveys have been used in election forecasting since 1992. In some elections, predictions were excellent, but in some elections, the predictions based on telephone surveys were not good. So, exit polls have been used along with the telephone surveys in predicting election outcomes since 2001 by the major broadcasting networks. Though telephone surveys, in general, have been less accurate than exit polls in election forecasting from 2000 to 2003, they were more accurate in the 2004 General Election than the exit polls. All predictions on the winners by the telephone surveys turned out to be accurate. But such success has not persisted. In the 2008 General Election, the telephone surveys was less accurate than the exit polls and actually its accuracy fell clown to the level of the 2000 General Election. This paper tried to find out. the factors responsible for the fluctuation of the accuracy of telephone polls.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.303-303
/
2018
안정적인 수자원 운용을 위해서는 정확한 유량예측 기술이 필요하다. 본 연구에서는 유량예측 정확도의 개선을 위해 베이지안 추론(Bayesian inference) 기법과 앙상블 유량 예측(Ensemble Streamflow Prediction, ESP) 기법의 결합을 통한 새로운 유량예측 기법(Bayesian ESP)을 제안하였다. ESP를 통한 유량 예보 앙상블은 베이지안 추론의 사전정보로 활용되며, 관측 유량과 ESP 전망 결과의 선형관계를 통해 우도함수가 추정된다. 우도함수는 관측 유량이 존재하는 과거 기간에 대한 ESP를 수행한 후 예보 시점의 관측 유량(concurrent observed flow)과 선행 관측 유량(lagged observed flow)과의 다중선형회귀 모형을 통해 추정된다. 사전정보와 우도함수는 정규분포로 가정되며, 따라서 최종 유량예측인 사후정보 역시 정규분포함수로 산정되게 된다. Bayesian ESP은 ESP에서 발생하는 강우-유출모형 오차의 개선을 통해 수문예측의 정확도를 개선하게 되며 정규분포함수로 최종 결과가 산정되므로 확률예보 형태의 수문 전망도 가능하다. 본 기법을 전국 35개 댐 유역에 시범적용을 한 결과, 모든 유역에서 기존 ESP 기법 대비 수문예측 정확도의 개선을 가져왔으며, 우도함수 추정에 있어 선행 유량의 포함 여부가 수문 예측 정확도의 추가적인 개선을 가져왔다. 본 기법은 주간 예보부터 계절 예보까지 탄력적으로 구축이 가능하며 적용 결과 리드 타임이 길어질수록 예측 능력이 감소되었지만 전체 구간에 있어서 Bayesian ESP 기법이 가장 우수한 예측 정확도를 보여주었다.
본 연구는 협력적 필터링 기법을 이용한 선호도 예측 과정에서 발생하는 추가 정보를 이용하여 선호도 예측 정확도를 향상시킬 수 있는 방안에 대하여 연구하였다. 본 연구에서는 특정 상품에 대한 목표 고객의 선호도 예측에 선정된 이웃의 수와 선호도 예측 정확도와의 관계를 분석하였다. 분석을 위하여 선호도 예측 과정에 선정된 이웃의 수를 4분위수로 4집단으로 구분하여 구분 집단 간 선호도 예측 정확도에 차이가 나타남을 알 수 있었으며 각 집단의 예측 오차들의 평균들을 이용하여 선형의 보정함수를 제안한다. 본 연구의 결과를 바탕으로 추천시스템에서 이웃 수를 이용한 보정함수를 이용하면 예측 정확도를 높일 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.363-363
/
2019
활성화 함수(activation function)는 기계학습(machine learning)의 학습과정에 비선형성을 도입하여 심층적인 학습을 용이하게 하고 예측의 정확도를 높이는 중요한 요소 중 하나이다(Roy et al., 2019). 일반적으로 기계학습에서 사용되고 있는 활성화 함수의 종류에는 계단 함수(step function), 시그모이드 함수(sigmoid 함수), 쌍곡 탄젠트 함수(hyperbolic tangent function), ReLU 함수(Rectified Linear Unit function) 등이 있으며, 예측의 정확도 향상을 위하여 다양한 형태의 활성화 함수가 제시되고 있다. 본 연구에서는 기계학습을 통하여 수위예측 시 정확도 향상을 위하여 Hybrid 활성화 함수를 제안하였다. 연구대상지는 조수간만의 영향을 받는 한강을 대상으로 선정하였으며, 2009년 ~ 2018년까지 10년간의 수문자료를 활용하였다. 수위예측 알고리즘은 Python 내 Tensorflow의 RNN (Recurrent Neural Networks) 모델을 이용하였으며, 강수량, 수위, 조위, 댐 방류량, 하천 유량의 수문자료를 학습시켜 3시간 및 6시간 후의 수위를 예측하였다. 예측정확도 향상을 위하여 입력 데이터는 정규화(Normalization)를 시켰으며, 민감도 분석을 통하여 신경망모델의 은닉층 개수, 학습률의 최적 값을 도출하였다. Hybrid 활성화 함수는 쌍곡 탄젠트 함수와 ReLU 함수를 혼합한 형태로 각각의 가중치($w_1,w_2,w_1+w_2=1$)를 변경하여 정확도를 평가하였다. 그 결과 가중치의 비($w_1/w_2$)에 따라서 예측 결과의 RMSE(Roote Mean Square Error)가 최소가 되고 NSE (Nash-Sutcliffe model Efficiency coefficient)가 최대가 되는 지점과 Peak 수위의 예측정확도가 최대가 되는 지점을 확인할 수 있었다. 본 연구는 현재 Data modeling을 통한 수위예측의 정확도 향상을 위해 기초가 되는 연구이나, 향후 다양한 형태의 활성화 함수를 제안하여 정확도를 향상시킨다면 예측 결과를 통하여 침수예보에 대한 의사결정이 가능할 것으로 기대된다.
본 연구는 추천시스템에서 협업필터링 알고리즘을 이용하여 특정 상품에 대한 고객의 선호도를 예측함에 있어 고객이 상품에 대해 평가한 선호도 평가치를 고객별로 표준화시켜 예측하여 기존의 예측 정확도를 향상시키는 방법에 대하여 연구하였다. 일반적으로 상품에 대한 고객의 선호도를 평가하기 위하여 절대적 기준의 수치적 척도가 제공되지만 개인에 따라서는 상품에 대한 선호 정도가 절대적 척도에 다르게 반영되어 개인별 선호도에 차이가 발생할 수 있다. 이러한 개인적 특성이 동일한 척도의 평가치로 예측되면 예측 결과의 오차를 크게 할 가능성이 있다. 또한 개인이 평가한 선호도 평가치의 편차가 협업필터링 알고리즘을 통한 선호도 예측 정확도와 밀접한 관계를 가지고 있음을 알 수 있었으며 이러한 문제를 해결하기 위하여 개별 고객이 평가한 선호도 평가치를 표준화시켜 표준화된 선호도 평가치를 이용한 선호도 예측을 실시하였다. 분석결과 표준화된 선호도 평가치를 이용한 예측 결과가 비표준화 선호도 평가치를 이용한 예측 결과보다 예측력이 우수함을 알 수 있었으며 결과에 대한 통계적 분석을 통하여 표준화된 선호도 평가치를 이용한 선호도 예측 방법과 비 표준화 선호도 평가치를 이용한 선호도 예측 방법을 혼합할 경우 선호도 예측 정확도를 더 향상시킬 수 있음을 알 수 있었다.
본 연구는 협업 추천 시스템에 적용되는 상품에 대한 고객의 선호도 예측 알고리즘 중 메모리기반 협업필터링 알고리즘의 선호도 예측 특성에 대하여 연구하였다. 메모리기반의 협업필터링 알고리즘은 선호도 예측 대상 고객과 유사한 성향을 가질 것으로 예상되는 고객들의 선호도 평가를 기반으로 특정 상품에 대한 선호도 예측이 이루어진다. 일반적으로 시스템을 이용하는 고객들과 선호성향이 다른 고객들은 선호도 예측 성과가 낮은 것으로 알려져 있으며 이들이 추천시스템의 선호도 예측 정확도를 떨어뜨리는 원인으로 알려져 있다. 본 연구에서는 고객이 상품들에 평가한 선호도 평가의 패턴이 선호도 예측 정확도와 관련성이 높음을 보여 선호도 예측 알고리즘의 개선에 기초 자료를 제공하고자 한다. 고객의 선호도 평가 패턴은 과거 고객이 평가한 자료로부터 얻을 수 있는 사전정보로써 선호도 예측 알고리즘을 적용하기 이전에 이용할 수 있는 정보이다. 본 연구에서는 사전정보를 이용하여 고객의 선호도 예측 오차의 특성을 연구함으로써 이들의 선호도 예측 정확도를 개선시킬 수 있는 알고리즘의 보정방법에 대하여 연구한다. 알고리즘의 보정방법을 선호도 예측 이전에 고객의 선호도 평가 특성으로 판단하여 적용함으로써 사전정보를 이용한 선호도 예측 정확도를 향상시키기 위한 접근법은 기존의 이웃 구성의 접근법과 다른 방법을 취함으로써 알고리즘 개선의 새로운 방향을 제시할 것으로 기대된다.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.243-248
/
2005
도메인 조합에 기반한 단백질 상호작용 예측 기법은 효모와 같은 특정 종에 대하여 우수한예측 정확도를 보이는 것으로 알려졌으나, 인간과 같은 고등 생명체의 단백질에 대한 상호작용 예측을 수행하기 위하여는 여러종에 대한 기법의 적절성검증과 최적의 학습집단 구성 방안에 대한 연구가 선행되어야 한다. 본 논문에서는, 초파리 단백질을 이용한 예측 정확도 검증으로 도메인 조합 기법의 일반화 가능성을 타진 하고 이종간의 상호작용 예측실험 및 정확도 검증을 통하여 비교적 연구가 덜 되어진 종의 단백질 상호작용 예측을 위한 학습집단 구성 방법에 대하여 기술한다. 초파리 실험에서는 10351개의 상호작용이 있는 단백질 쌍 가운데, 80%와 20%를 각각 학습집단 및 실험집단으로 사용하였으며, 상호작용이 없는단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 이 결과77.58%의 민감도와 92.61%의 특이도를 확인하였다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모, 초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 곁과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠수록 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR) 는 상호작용 예측 정확도의 중요한 요소임을 찾아내었다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.27-31
/
2009
본 연구는 웹상에서 거래되는 아이템을 고객에게 추천하는 추천시스템에서 추천대상 고객의 정보와 이웃 고객의 정보를 이용한 협력적 필터링 추천기법에서 선호도 예측을 위해 필요한 이웃의 수가 선호도 예측 정확도에 영향을 주고 있음을 제시하고 이를 이용한 선호도 예측치의 보정 방법에 대하여 제안한다. 본 연구의 제안을 위하여 이웃 기반의 협력적 필터링 알고리즘과 대응평균 알고리즘을 이용하여 MovieLens 1 million dataset에 대하여 선호도 예측 정확도를 분석하고 분석결과를 토대로 개별 선호도 예측에 소요된 이웃의 수와 예측 정확도의 관계를 분석하였다. 분석결과를 이용하여 이웃 수에 따라 선호도 예측 결과를 다수의 집단으로 구분하여 각 집단에서 이웃의 수를 이용한 선호도 예측 정확도 향상에 대한 방법을 제안한다. 본 연구의 제안을 통하여 기존 선호도 예측 알고리즘으로 생성된 예측 결과에 선호도 예측 과정에서 부가적으로 발생한 정보를 추가하여 최종 예측 결과를 향상시킬 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.