EMI 감쇄성능의 정확한 예측을 위해서는 EMI 필터에 사용되는 소자에 대한 명확한 공통 및 차동 모드 임피던스 모델 정보가 필요하다. 하지만 기존의 전도성 EMI 감쇄성능 예측 방식은 이러한 모델의 부재로 인해 고주파수에서 예측 값과 실험 결과에 큰 오차가 발생하는 문제점이 있다. 이를 해결하기 위해 본 논문에서는 일반적으로 사용되는 EMI 필터의 소자를 전도성 전파 규제 범위에서 모델링하고 이를 이용하여 공통 및 차동모드 임피던스로 다시 모델링한다. 실험 결과 EMI 감쇄성능을 1MHz 이하의 영역에서만 예측할 수 있었던 기존 방식과 비교해 제안 방식은 10MHz 영역까지 예측할 수 있는 장점이 있다. 최종적으로 임피던스 분석기를 이용한 측정 결과와 모의실험 결과를 제시하여 제안 방식의 타당성 및 유용성을 검증한다.
우리 나라 축사는 생산효율 제고를 위하여 대형화, 밀폐화, 고밀도화, 자동화 경향이 뚜렷하다. 대형의 밀폐된 고밀도 축사는 쾌적한 실내환경을 전제로 하기 때문에 기계적으로 실내환경을 적절히 제어하지 않으면 안된다. 제한된 공간에 먼지, 병원성 미생물, 유해기체, 수분이나 열의 과도한 집적은 생산과 재생산효율에 심각한 영향을 미친다. 그러므로 축사내 생산주체인 가축과 작업인이 쾌적한 실내환경에서 생산활동을 할 수 있도록 열적, 화학적/생물학적 환경을 물리적으로 제어하지 않으면 안된다. 본 연구는 실험축사내 가축이 일정한 열을 발생할 때 실내공기의 유동형태를 예측하기 위해서 수행하였다. 이 연구의 결과를 실내환경제어를 위한 환기시스템 책략 개발의 기초자료로 활용할 수 있다. 실험축사내의 공기유동을 예측하기 위해 Body-Fitted Coordinate(BFC)의 격자배열과 k-$\varepsilon$ 난류모형 및 SIMPLE계열 solution scheme을 사용하였으며, 예측의 유효성 검정은 Boon(1978)의 실험결과를 이용하였다. 예측한 공기유동의 형태와 실험한 공기유동의 형태를 비교한 결과 대체로 만족할만한 결과를 얻었다. 그러나 유입공기의 온도가 1$0^{\circ}C$인 경우의 공기유동은 실험유동형태와 약간의 차이가 있었다. 즉, 실험에서는 수평슬롯으로 유입 된 공기가 바로 아래로 굴절되어 유동하였으나, 예측의 결과는 일정 거리로 수평방향으로 유동하다가 아래로 굴절하였다. 이런 유동의 차이는 k-$\varepsilon$ 난류모형 자체가 경험적으로 부력에 민감하게 반응않는 결함이 원인이 될 수도 있으며, 실험의 부적절한 수행이 원인이 될 수도 있다. 이 유동의 경우 Reynolds 수가 3,000정도의 난류이며, 완전발달유동 (fully-developed flow)이므로 관성력 (inertia force)이 부력 (buoyancy force)보다 커, 일정거리 수평으로 유동하다가 아래로 굴절할 수도 있기 때문이다. 앞으로 이를 규명하기 위한 보다 깊이 있는 연구가 이루어져야 할 것이다.
2011 년부터 2014 년까지 4 년간의 여름철에 한반도에 비교적 많은 강수를 남긴 23 개의 중규모 저기압-구름무리 집중호우 사례를 선정하여, 이들 사례에서의 중규모 저기압 발생과 이동 그리고 그것에 동반된 강수계에 의한 강수 발생을 수치예측하는 실험을 수행하였다. WRF 모델을 이용하여 12 km와 4 km 수평격자 크기로 수치실험을 진행하였으며, 각 사례에 대해 중규모 저기압이 발생한 시점을 초기 시각으로 하여 수치적분을 수행하였다. 수치실험 결과와 AWS 강수량 관측 자료를 $0.1^{\circ}{\times}0.1^{\circ}$ 격자에 각각 내삽한 후 비교하였다. 12 km 격자 실험에서는 25 mm/12h 문턱값에 대해 23개의 사례 중 9개 (39 %)만이 0.3이 넘는 성공임계지수(TS)를 나타냈고, 50 mm/12h 문턱값에 대해서는 17개 사례 중 7개 (41 %)의 사례에서 0.3이 넘는 TS가 나타났다. 4 km 실험에서는 25 mm/12h 문턱값에 대해 23개의 사례 중 10개 (43 %) 사례에서 0.3이 넘는 TS 값이 나타났고, 50 mm/12h 문턱값에 대해서는 17개 사례 중 7개 (41 %)로 나타나 WRF 모델의 수평격자 크기와 관계없이 비슷한 성능을 보였다. 중규모 저기압이 진행하는 경로에 따라 예측 능력에 차이가 나타났다. 23개 사례를 중규모 저기압 발생지점으로부터의 이동경로에 따라 준 직선 경로 사례 그룹, 곡선형 경로 사례 그룹, 정체사례 그룹으로 분류하여 각 그룹에 대해 예측 능력을 조사한 결과, 직전 경로 사례들에 대한 4km 격자 모델 예측은 55 %의 사례에서 0.3보다 큰 TS값을 보여, 30 %의 사례에서 0.3 이상의 TS 값을 보인 곡선형 경로 사례들에 대한 예측보다 상대적으로 높은 예측 신뢰도를 보여 주었다.
가압경수로의 부분충수 운전중 RHR 계통의 기능상실시 사고완화를 위해 가압기 manway와 증기 발생기 출구공동 manway를 동시에 개방한 경우에 대한 실험결과를 CATHAHR2 코드를 이용하여 해석하였다. 해석을 통해 이 경우에 발생하는 물리적 현상을 이해하고 이와 같은 과도기에 대해 코드 예측능력을 평가하므로 써, 실제 원전에서 사고시 적절한 사고대응 방안을 강구하는데 참고가 될 수 있도록 해석적 근거를 제시하고자 한다. 연구결과 CATHARE2 코드는 실험을 통해 관측된 주요 물리적 현상들을 타당하게 예측하였으나, 가압기와 밀림관의 DP를 과대 예측하여 원자로 상부공동의 최대압력을 실험보다 약 7kPa 높게 예측하였다. 노심 노출시간도 노심에서 기포율 분포를 비현실적으로 예측하여 실험보다 약 500초 지연되었다. 실험과 코드의 모의결과를 통하여 노심 노출은 중력주입에 의한 냉각수 보충만으로 충분히 회복될 수 있음을 확인하였다. CATHARE2 코드는 비록 상세한 현상들에 대해 다소 불확실성을 내포하였으나, 전반적인 거동분석에는 타당한 것으로 판단된다. CATHARE 코드는 노심에서 계면 마찰력을 줄임으로써 노심의 차압을 개선할 수 있었고, guide 튜브의 위치를 고온관 중심선과 일치시켜 guide 튜브내 액체의 hold-up 기간을 개선할 수 있었으며, 가압기의 계면 마찰력을 증가시켜서 밀림관에서 "plug and clearing" 현상을 모의할 수 있었다.모의할 수 있었다.
테트라포드로 피복된 사석경사제를 대상으로 하여 설계파 조건, 피복층 마루폭 그리고 마루 여유고를 변화시켜 수리실험을 수행한 후, 대상 구조물의 월파 성능을 검토하며 그리고 널리 사용되고 있는 월파량 예측모형을 적용하여 수리실험 결과와 비교를 통해 예측모형들의 특성을 파악하였다. 사면경사와 주기는 월파량에 상당히 영향을 미치나, 피복층 마루폭의 변화에 따른 월파량의 차이는 미미한 편이다. Owen(1980)의 예측모형은 계측월파량과 비교하여 과대 예측하는 반면에, Van der Meer et al.(1998)의 예측모형은 비교적 급한 사면($cot{\alpha}$=1.5)에서만 과소 예측하는 경향이 있다. Besley(1999)와 Pedersen(1996)의 예측모형은 보다 폭이 넓은 피복층 마루폭을 가진 사면에서 계측월파량에 비교적 좋은 일치를 보여주나, 모든 실험조건에 대해서는 일반적으로 수정 Pedersen의 예측모형이 계측월파량에 가장 일치하는 결과를 나타낸다.
인발성형 적층 FRP 복합소재의 재료상수는 일반적으로 시편실험을 통해 구해지고 있으나, 본 논문에서는, 실험에서 구한 탄성계수가 부재일 경우를 위해, Micromechanics와 Classical Laminate Theory (CLT)를 이용한 적층 FRP 복합재료의 탄성계수(E/sub L/과 E/sup b//sub L/) 예측모델을 제시하였다 또한 예측모델로부터 구한 값과 실험으로부터 얻은 실측값을 비교하여 그 적정성을 검증하였고, 예측모델의 민감도 및 확률적인 특성을 구성소재 (Constituents)의 재료특성에 근거해 평가하였다.
이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.
파이프라인과 슈퍼스칼라 방식이 일반화된 시스템 구조 하에서, 분기 명령어는 시스템 전체적인 성능에 중요한 영향을 미친다. 특히 분기 예측이 실패했을 경우, 잘못된 분기 예측으로 인한 페널티가 발생한다는 점에서 분기 예측의 정확도에 대한 중요성은 크다고 할 수 있다. 본 논문에서는 분기 예측의 정확도를 높이기 위해서, 분기 예측과 관련된 신경망을 구축하여 이를 통해 분기 예측에 필요한 각 요소별 가중치의 변화를 분석하고, 이를 분기 예측에 새롭게 반영하고자 한다. 본 논문에서는 이를 위해 실행 구동 방식의 시뮬레이터인 SimpleScalar를 통하여 모의 실험을 수행하였으며, 실험 결과 본 논문에서 제시한 새로운 기법이 기존의 일반적인 이단계 적응형 분기 예측 기법이나 gshare 기법에 비하여 더 우수한 결과를 보였다.
큰 에디 모의과정을 포함한 WRF 모델 (WRF-LES)을 이용하여 수치모델의 수평공간 규모에 따른 대기경계층 모수화 실험과 LES 모의 결과를 지표층 근처의 풍속 예측에 대하여 비교하였다. 수치실험은 복잡한 산악지형과 해안지역을 포함하는 강원도 지역에서 수평해상도 1 km와 333 m 실험을 수행하였다. 수평해상도 1 km 실험은 대기경계층 모수화 방안을 채택하였으며, 333 m 실험에서는 LES를 이용하였다. 복잡한 산악지역에서의 풍속 예측의 정확성은 수평해상도 1 km 실험 보다 333 m 실험에서 향상되었으며 해안지역에서는 1 km 실험에서 관측과 더 일치하였다. 지표층 근처의 큰 난류를 직접 계산하는 LES 실험은 산악지역의 풍속예측 개선에 기여하였다.
FLECHT-SEASET 실험을 이용하여 냉각재상실사고시 Reflood에 대한 TRAC-PF1 전산코드의 예측 능력을 평가하였다. FLECHT-SEASET 실험 장치는 3.657m(12 ft) 높이 161개 전열 봉으로 이루어 져 있으며, 다양한 재관수율, 계통압력, 초기 피복재온도, 재관수온도 노심내 반경방향 출력분포 둥의 조건에 따라 수행된 실험이다. TRAC-PF1은 비균질 비평형 이상유동 열수력(Nonhomogeneous Non-equilibrium Two-Fluid Hydrodynamic)모델을 사용하고 원자로 압력용기는 3차원으로 모델할 수 있는 최적전산코드로서, 이 평가 계산에는 HP Version이 사용되었다. 본 연구에서는 재관수율 변화에 따라 달라지는 연료봉 최대 피복재온도와 Quench 시간에 대한 TRAC-PF1 전산코드의 예측 능력을 중점적으로 평가하였다. 계산 결과 TRAC-PF1은 최대 피복재온도는 약 20-100$^{\circ}$K 낮게, Quench 시간은 실험치와 비교하여 약 40-150초 정도 늦게 예측하는 것으로 나타났는데, 재관수율이 낮을수록 최대피복재 온도는 낮게, Quench 시간은 늦게 예측하는 경향을 보이고 있다. 또한 재관수율이 3 in/sec 이상에서 노심 상부가 일찍 Quenching 되는 것으로 계산되는데, 이는 노심상부 열전달 Regime의 부적절한 계산이 원인으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.