• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.041 seconds

Rule Discovery and Matching for Forecasting Stock Prices (주가 예측을 위한 규칙 탐사 및 매칭)

  • Ha, You-Min;Kim, Sang-Wook;Won, Jung-Im;Park, Sang-Hyun;Yoon, Jee-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.3
    • /
    • pp.179-192
    • /
    • 2007
  • This paper addresses an approach that recommends investment types for stock investors by discovering useful rules from past changing patterns of stock prices in databases. First, we define a new rule model for recommending stock investment types. For a frequent pattern of stock prices, if its subsequent stock prices are matched to a condition of an investor, the model recommends a corresponding investment type for this stock. The frequent pattern is regarded as a rule head, and the subsequent part a rule body. We observed that the conditions on rule bodies are quite different depending on dispositions of investors while rule heads are independent of characteristics of investors in most cases. With this observation, we propose a new method that discovers and stores only the rule heads rather than the whole rules in a rule discovery process. This allows investors to define various conditions on rule bodies flexibly, and also improves the performance of a rule discovery process by reducing the number of rules. For efficient discovery and matching of rules, we propose methods for discovering frequent patterns, constructing a frequent pattern base, and indexing them. We also suggest a method that finds the rules matched to a query issued by an investor from a frequent pattern base, and a method that recommends an investment type using the rules. Finally, we verify the superiority of our approach via various experiments using real-life stock data.

Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network (RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법)

  • NGUYEN, HUU DUNG;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.703-712
    • /
    • 2019
  • Single image Super-Resolution (SISR) aims to generate a visually pleasing high-resolution image from its degraded low-resolution measurement. In recent years, deep learning - based super - resolution methods have been actively researched and have shown more reliable and high performance. A typical method is WaveletSRNet, which restores high-resolution images through wavelet coefficient learning based on feature maps of images. However, there are two disadvantages in WaveletSRNet. One is a big processing time due to the complexity of the algorithm. The other is not to utilize feature maps efficiently when extracting input image's features. To improve this problems, we propose an efficient single image super resolution method, named RDB-WaveletSRNet. The proposed method uses the residual dense block to effectively extract low-resolution feature maps to improve single image super-resolution performance. We also adjust appropriated growth rates to solve complex computational problems. In addition, wavelet packet decomposition is used to obtain the wavelet coefficients according to the possibility of large scale ratio. In the experimental result on various images, we have proven that the proposed method has faster processing time and better image quality than the conventional methods. Experimental results have shown that the proposed method has better image quality by increasing 0.1813dB of PSNR and 1.17 times faster than the conventional method.

A proposal on a proactive crawling approach with analysis of state-of-the-art web crawling algorithms (최신 웹 크롤링 알고리즘 분석 및 선제적인 크롤링 기법 제안)

  • Na, Chul-Won;On, Byung-Won
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.43-59
    • /
    • 2019
  • Today, with the spread of smartphones and the development of social networking services, structured and unstructured big data have stored exponentially. If we analyze them well, we will get useful information to be able to predict data for the future. Large amounts of data need to be collected first in order to analyze big data. The web is repository where these data are most stored. However, because the data size is large, there are also many data that have information that is not needed as much as there are data that have useful information. This has made it important to collect data efficiently, where data with unnecessary information is filtered and only collected data with useful information. Web crawlers cannot download all pages due to some constraints such as network bandwidth, operational time, and data storage. This is why we should avoid visiting many pages that are not relevant to what we want and download only important pages as soon as possible. This paper seeks to help resolve the above issues. First, We introduce basic web-crawling algorithms. For each algorithm, the time-complexity and pros and cons are described, and compared and analyzed. Next, we introduce the state-of-the-art web crawling algorithms that have improved the shortcomings of the basic web crawling algorithms. In addition, recent research trends show that the web crawling algorithms with special purposes such as collecting sentiment words are actively studied. We will one of the introduce Sentiment-aware web crawling techniques that is a proactive web crawling technique as a study of web crawling algorithms with special purpose. The result showed that the larger the data are, the higher the performance is and the more space is saved.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Experimental investigation of turbulent effects on settling velocities of inertial particles in open-channel flow (개수로 흐름에서 난류가 관성입자의 침강속도에 미치는 영향에 대한 실험연구)

  • Baek, Seungjun;Park, Yong Sung;Jung, Sung Hyun;Seo, Il Won;Jeong, Won
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.955-967
    • /
    • 2022
  • Existing particle tracking models predict vertical displacement of particles based on the terminal settling velocity in the stagnant water. However, experimental results of the present study confirmed that the settling velocity of particles is influenced by the turbulence effects in turbulent flow, consistent with the previous studies. The settling velocity of particles and turbulent characteristics were measured by using PTV and PIV methods, respectively, in order to establish relationship between the particle settling velocity and the ambient turbulence. It was observed that the settling velocity increase rate starts to grow when the particle diameter is of the same order as Kolmogorov length scale. Compared with the previous studies, the present study shows that the graphs of the settling velocity increase rate according to the Stokes number have concave shapes for each particle density. In conclusion, since the settling velocity in the natural flow is faster than in the stagnant water, the existing particle tracking model may estimate a relatively long time for particles to reach the river bed. Therefore, the results of the present study can help improve the performance of particle tracking models.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

3DentAI: U-Nets for 3D Oral Structure Reconstruction from Panoramic X-rays (3DentAI: 파노라마 X-ray로부터 3차원 구강구조 복원을 위한 U-Nets)

  • Anusree P.Sunilkumar;Seong Yong Moon;Wonsang You
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.326-334
    • /
    • 2024
  • Extra-oral imaging techniques such as Panoramic X-rays (PXs) and Cone Beam Computed Tomography (CBCT) are the most preferred imaging modalities in dental clinics owing to its patient convenience during imaging as well as their ability to visualize entire teeth information. PXs are preferred for routine clinical treatments and CBCTs for complex surgeries and implant treatments. However, PXs are limited by the lack of third dimensional spatial information whereas CBCTs inflict high radiation exposure to patient. When a PX is already available, it is beneficial to reconstruct the 3D oral structure from the PX to avoid further expenses and radiation dose. In this paper, we propose 3DentAI - an U-Net based deep learning framework for 3D reconstruction of oral structure from a PX image. Our framework consists of three module - a reconstruction module based on attention U-Net for estimating depth from a PX image, a realignment module for aligning the predicted flattened volume to the shape of jaw using a predefined focal trough and ray data, and lastly a refinement module based on 3D U-Net for interpolating the missing information to obtain a smooth representation of oral cavity. Synthetic PXs obtained from CBCT by ray tracing and rendering were used to train the networks without the need of paired PX and CBCT datasets. Our method, trained and tested on a diverse datasets of 600 patients, achieved superior performance to GAN-based models even with low computational complexity.

Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT (효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현)

  • TaeKyoung Roh;Sang-Hyun Ha;KiHwan Kim;Young-Jin Kang;Seok Chan Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.73-82
    • /
    • 2023
  • With 78% of current fisheries workers being elderly, there's a pressing need to address labor shortages. Consequently, active research on smart aquaculture technologies, centered on object detection and tracking algorithms, is underway. These technologies allow for fish size analysis and behavior pattern forecasting, facilitating the development of real-time monitoring and automated systems. Our study utilized video data from cameras outside aquaculture facilities and implemented fish detection and tracking algorithms. We aimed to tackle high maintenance costs due to underwater conditions and camera corrosion from ammonia and pH levels. We evaluated the performance of a real-time system using YOLOv7 for fish detection and the SORT algorithm for movement tracking. YOLOv7 results demonstrated a trade-off between Recall and Precision, minimizing false detections from lighting, water currents, and shadows. Effective tracking was ascertained through re-identification. This research holds promise for enhancing smart aquaculture's operational efficiency and improving fishery facility management.

SNP Marker Selection for Dog Breed Identification from Genotypes of High-density SNP Array and Machine Learning (고밀도 SNP 칩 유전자형 데이터 기계학습 기반 반려견 품종 식별 유전마커 선발)

  • Hyung-Yong Kim;Bong-Hwan Choi;Taeyun Oh;Byeong-Chul Kang
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.93-101
    • /
    • 2019
  • Dog (Canis lupus familiaris) is a member of genius Canis that forms part of the wolf-like canids, and it has been evolved to diverse domestic breeds since 100 thousand years ago. Practical dog breed identification has been emerged to important part of pet industry such as genealogical certificates. From 11 dog breeds, 226 dogs and 23K SNP genotypes, we selected minimal SNPs of breed identification using machine learning algorithms including multiclass classification and feature selection. With 100 times of random choice of 70% data for training and 30% testing, we evaluated 9 classifiers' accuracies and 2 methods of feature selection. Linear SVM and PCA weighted feature selection showed the best accuracy of classification. Finally, we selected SNP markers and it could identify 11 breeds with approximately 90% accuracy, when having 40 SNP. This marker set is expected to be useful for dog breed and disease management by integration with disease markers.