• Title/Summary/Keyword: 예측성능 개선

Search Result 981, Processing Time 0.024 seconds

Development of a High-Performance Concrete Compressive-Strength Prediction Model Using an Ensemble Machine-Learning Method Based on Bagging and Stacking (배깅 및 스태킹 기반 앙상블 기계학습법을 이용한 고성능 콘크리트 압축강도 예측모델 개발)

  • Yun-Ji Kwak;Chaeyeon Go;Shinyoung Kwag;Seunghyun Eem
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-18
    • /
    • 2023
  • Predicting the compressive strength of high-performance concrete (HPC) is challenging because of the use of additional cementitious materials; thus, the development of improved predictive models is essential. The purpose of this study was to develop an HPC compressive-strength prediction model using an ensemble machine-learning method of combined bagging and stacking techniques. The result is a new ensemble technique that integrates the existing ensemble methods of bagging and stacking to solve the problems of a single machine-learning model and improve the prediction performance of the model. The nonlinear regression, support vector machine, artificial neural network, and Gaussian process regression approaches were used as single machine-learning methods and bagging and stacking techniques as ensemble machine-learning methods. As a result, the model of the proposed method showed improved accuracy results compared with single machine-learning models, an individual bagging technique model, and a stacking technique model. This was confirmed through a comparison of four representative performance indicators, verifying the effectiveness of the method.

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.

Analysis on the Advanced Model for Solar Energy Harvesting (개선된 태양 에너지 하베스팅 모델에 대한 분석)

  • Nayantai, Bulganbat;Kong, In-Yeup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Replacement of sensor nodes for monitoring a wide range area such as mountains and forests needs a lot of time and cost. Using new and renewable energy around them can maximize the lifetime of wireless sensor networks, in which solar energy is infinite energy source that is available in 365 days. To design these sensor networks, solar energy model is essential and to estimate and analyze the overall photovoltaic energy. Using this, we can figure out important data such as the size and performance of solar panel needed. However, existing researches for solar energy harvesting consider parts of many factors to influence the quantity of solar energy gathered. In this paper, we suggest advanced solar energy harvesting model considering angular loss (solar cell panel), overheat loss (solar cell), rechargeable battery heat and cooling for each monthly properties. From our experimental results according to outdoor temperature, panel angle and the surface temperature of solar panel, we show these impact factors are correctly configured.

Design of MMIC SPST Switches Using GaAs MESFETs (GaAs MESFET을 이용한 MMIC SPST 스위치 설계)

  • 이명규;윤경식;형창희;김해천;박철순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.371-379
    • /
    • 2002
  • In this paper, the MMIC SPST switches operating from DC to 3GHz were designed and implemented. Prior to the design of switches, the small and large-signal switch models were needed to predict switch performance accurately. The newly proposed small-signal switch model parameters were extracted from measured S-parameters using optimization technique with estimated initial values and boundary limits. In the extraction of large-signal switch model parameters, the current source was modeled by fitting empirical equations to measured DC data and the charge model was derived from extracted channel capacitances from measured S-parameters varying the drain-source voltage. To design basic series-shunt SPST switches and isolation-improved SPST switches, we applied this model to commercial microwave circuit simulator. The improved SPST switches exhibited 0.302dB insertion loss, 35.762dB isolation, 1.249 input VSWR, 1.254 output VSWR, and about 15.7dBm PldB with 0/-3V control voltages at 3GHz.

Design of Fuzzy System with Hierarchical Classifying Structures and its Application to Time Series Prediction (계층적 분류구조의 퍼지시스템 설계 및 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2009
  • Fuzzy rules, which represent the behavior of their system, are sensitive to fuzzy clustering techniques. If the classification abilities of such clustering techniques are improved, their systems can work for the purpose more accurately because the capabilities of the fuzzy rules and parameters are enhanced by the clustering techniques. Thus, this paper proposes a new hierarchically structured clustering algorithm that can enhance the classification abilities. The proposed clustering technique consists of two clusters based on correlationship and statistical characteristics between data, which can perform classification more accurately. In addition, this paper uses difference data sets to reflect the patterns and regularities of the original data clearly, and constructs multiple fuzzy systems to consider various characteristics of the differences suitably. To verify effectiveness of the proposed techniques, this paper applies the constructed fuzzy systems to the field of time series prediction, and performs prediction for nonlinear time series examples.

A Fast Block Matching Motion Estimation Algorithm by using the Enhanced Cross-Hexagonal Search Pattern (개선된 크로스-육각 패턴을 이용한 고속 블록 정합 움직임 추정 알고리즘)

  • Nam Hyeon-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.77-85
    • /
    • 2006
  • There is the spatial correlation of the video sequence between the motion vector of current blocks. In this paper, we propose the enhanced fast block matching algorithm using the spatial correlation of the video sequence and the center-biased properly of motion vectors. The proposed algorithm determines an exact motion vector using the predicted motion vector from the adjacent macro blocks of the current frame and the Cross-Hexagonal search pattern. From the of experimental results, we can see that our proposed algorithm outperforms both the prediction search algorithm (NNS) and the fast block matching algorithm (CHS) in terms of the search speed and the coded video's quality. Using our algorithm, we can improve the search speed by up to $0.1{\sim}38%$ and also diminish the PSNR (Peak Signal Noise Ratio) by at nst $0.05{\sim}2.5dB$, thereby improving the video qualify.

  • PDF

Improved Power Performances of the Size-Reduced Amplifiers using Defected Ground Structure (결함 접지 구조를 이용하여 소형화한 증폭기의 개선된 전력 성능)

  • Lim, Jong-Sik;Jeong, Yong-Chae;Han, Jae-Hee;Lee, Young-Taek;Park, Jun-Seok;Ahn, Dal;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.754-763
    • /
    • 2002
  • This paper discusses the improved power performances of the size-reduced amplifier using defected ground structure (DGS). The slow-wave effect and enlarged electrical length occur due to the additional equivalent circuit elements of DGS. Using these properties, it is possible to reduce the length of transmission lines in order to keep the same original electrical lengths by inserting DGS on the ground plane. The matching and performances of the amplifier are preserved even after DGS patterns have been inserted. While there is no loss in the size-reduced transmission lines at the operating frequency, but there exists loss to some extent at harmonic frequencies. This leads to the more excellent inherent capability of harmonic rejection of the size-reduced amplifier. Therefore, it is expected tile harmonics of the size-reduced amplifier are smaller than those of the original amplifier. The measured second harmonic, third order intermodulation distortion (IMD3), and adjacent channel power ratio (ACPR) of the size-reduced amplifier are smaller than those of the original amplifier by 5 dB, 2~6 dB, and 1~4 dB, respectively, as expectation.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

Performance Evaluation of Opportunistic Incremental Relaying Systems by using Partial and Full Channel Information in Rayleigh Fading Channels (레일레이 페이딩 채널에서 부분 및 전체 채널 정보를 이용하는 기회전송 증가 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.71-78
    • /
    • 2013
  • Recently, the opportunistic incremental relaying systems have been studied to improve the system performance effectively in wireless fading channel. Most of the performance analysis of the system includes a source-destination direct link. And there are few analysis which consider source-relay-destination indirect paths only. Therefore this paper proposes a transmission protocol which relays the source information using the selected relay from the partial channel information at the first stage in an opportunistic incremental relaying system. If the transmission fails, the selected best relay from the full channel information retransmits the information to the destination incrementally. The performance of the proposed system is derived analytically and verified from Monte Carlo simulation. The derived results can be applied to the system design and the performance estimation of the mobile systems and the bidirectional TV broadcasting systems which adapt an opportunistic incremental relaying system.