• Title/Summary/Keyword: 예측부호화

Search Result 688, Processing Time 0.027 seconds

Performance Analysis of a Mobile Stratospheric Communication System with Channel Codings over Rician Log-Normal Fading Channel Models (라이시안 로그노말 페이딩 채널 모델에서 채널 부호를 사용한 이동 성층권 통신 시스템의 성능 분석)

  • 강병권
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.67-73
    • /
    • 2002
  • There have been increased concerns on mobile stratospheric communication system(SCS) for the purpose of advanced service of personal and high speed communication systems. In fact, this SCS is considered and studied for IMT-2000 service by ITU. Although, it is important to make accurate channel model for prediction of the SCS performance, there is no measured channel data in this system. Thus, in this paper, we estimate the performance of SCS bye use of channel model provided by Corazza(2) and modified by You(3). And also, the effects of channel codings on system performance are analyzed by deriving bit error performance based on realistic Rician log-normal fading channel models. The performance results are divided into three kinds of areas with three kinds of elevation angles 20$^\cire$, 45$^\cire$, and 80$^\cire$. And also the effects of forward error correction channel codings on system performance with Hamming(7,4), HCH( IS,7) and convolutional code of constraint length 3 and code rate R=1/2.

  • PDF

Tile-Based 360 Degree Video Streaming System with User's gaze Prediction (사용자 시선 예측을 통한 360 영상 타일 기반 스트리밍 시스템)

  • Lee, Soonbin;Jang, Dongmin;Jeong, Jong-Beom;Lee, Sangsoon;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1053-1063
    • /
    • 2019
  • Recently, tile-based streaming that transmits one 360 video in several tiles, is actively being studied in order to transmit these 360 video more efficiently. In this paper, for the transmission of high-definition 360 video corresponding to user's viewport in tile-based streaming scenarios, a system of assigning the quality of tiles at each tile by applying the saliency map generated by existing network models is proposed. As a result of usage of Motion-Constrained Tile Set (MCTS) technique to encode each tile independently, the user's viewport was rendered and tested based on Salient360! dataset, streaming 360 video based on the proposed system results in gain to 23% of the user's viewport compared to using the existing high-efficiency video coding (HEVC).

Motion Estimation in Video Coding using Search Candidate Point on Region by Binary-Tree Structure (이진트리 구조에 따른 구간별 탐색 후보점을 이용한 비디오 코딩의 움직임 추정)

  • Kwak, Sung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.402-410
    • /
    • 2013
  • In this paper, we propose a new fast block matching algorithm for block matching using the temporal and spatially correlation of the video sequence and local statistics of neighboring motion vectors. Since the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(sum of absolute difference) value by the predicted motion vectors of neighboring blocks around the same block of the previous frame and the current frame and the predictor candidate point on each division region by binary-tree structure. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast FS(full search) motion estimation and other fast motion estimation.

Motion Estimation Skipping Technique for Fast Motion Estimation (고속 움직임 추정을 위한 움직임 추정 생략 기법)

  • 강현수;박성모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.726-732
    • /
    • 2003
  • The paper proposes a motion estimation (ME) technique to reduce computational complexity. It is achieved by skipping ME process for macro-blocks decided to be in no need of the operation. Thus, it is called ME skipping technique(MEST). In general, the ME is composed of integer pixel precision ME (IME) followed by half pixel precision ME (HME). The MEST is performed just before an IME process and makes a decision on skipping the IME process according to a criterion based on ME errors of adjacent macro-blocks (MBs) already encoded. When the IME process for a MB is decided to be skipped, which is called ME skip mode, the IME process is skipped and the integer pixel precision motion vector of the MB is just replaced by a predicted vector and used as the input of HME. On the other hands, the IME processes for MBs in ME non-skip mode are not skipped but normally performed. Accordingly, the MEST is very effective to reduce computational complexity when MBs in ME skip mode is abundant. In addition, when the MEST is applied to video encoder, it contributes to more accurate rate control and more robusaess for channel errors. It is experimentally shown that the MEST has the above advantages while maintaining good reconstructed image quality.

Subjective Video Quality Evaluation of H.265/HEVC Encoded Low Resolution Videos for Ultra-Low Band Transmission System (초협대역 전송 시스템상에서 H.265/HEVC 부호화 저해상도 비디오에 대한 주관적 화질 평가)

  • Uddina, A.F.M. Shahab;Monira, Mst. Sirazam;Chung, TaeChoong;Kim, Donghyun;Choi, Jeung Won;Jun, Ki Nam;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1085-1095
    • /
    • 2019
  • In this paper, we perform a subjective quality assessment on low-resolution surveillance videos, which are encoded with a very low target bit-rate to use in an ultra-low band transmission system and investigate the encoding effects on the perceived video quality. The test videos are collected based on their spatial and temporal characteristics which affect the perceived quality. H.265/HEVC encoder is used to prepare the impaired sequences for three target bit-rates 20, 45, and 65 kbps and subjective quality assessment is conducted to evaluate the quality from a viewing distance of 3H. The experimental results show that the quality of encoded videos, even at target bit-rate of 45 kbps can satisfy the users. Also we compare objective image/video quality assessment methods on the proposed dataset to measure their correlation with subjective scores. The experimental results show that the existing methods poorly performed, that indicates the need for a better quality assessment method.

A Method For Improvement Of Split Vector Quantization Of The ISF Parameters Using Adaptive Extended Codebook (적응적인 확장된 코드북을 이용한 분할 벡터 양자화기 구조의 ISF 양자화기 개선)

  • Lim, Jong-Ha;Jeong, Gyu-Hyeok;Hong, Gi-Bong;Lee, In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents a method for improving the performance of ISF coefficients quantizer through compensating the defect of the split structure vector quantization using the ordering property of ISF coefficients. And design the ISF coefficients quantizer for wideband speech codec using proposed method. The wideband speech codec uses split structure vector quantizer which could not use the correlation between ISF coefficients fully to reduce complexity and the size of codebook. The proposed algorithm uses the ordering property of ISF coefficients to overcome the defect. Using the ordering property, the codebook redundancy could be figured out. The codebook redundancy is replaced by the adaptive-extended codebook to improve the performance of the quantizer through using the ordering property, ISF coefficient prediction and interpolation of existing codebook. As a result, the proposed algorithm shows that the adaptive-extended codebook algorithm could get about 2 bit gains in comparison with the existing split structure ISF quantizer of AMR-WB (G.722.2) in the points of spectral distortion.

Cancellation of MRI Artifact due to Rotational Motion (회전운동에 기인한 MRI 아티팩트의 제거)

  • 김응규
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.411-419
    • /
    • 2004
  • When the imaging object rotates in image plane during MRI scan, its rotation causes phase error and non-uniform sampling to MRI signal. The model of the problem including phase error non-uniform sampling of MRI signal showed that the MRI signals corrupted by rotations about an arbitrary center and the origin in image plane are different in their phases. Therefore the following methods are presented to improve the quality of the MR image which includes the artifact. The first, assuming that the angle of 2-D rotational motion is already known and the position of 2-D rotational center is unknown, an algorithm to correct the artifact which is based on the phase correction is presented. The second, in case of 2-D rotational motion with unknown rotational center and unknown rotational angle, an algorithm is presented to correct the MRI artifact. At this case, the energy of an ideal MR image is minimum outside the boundary of the imaging object to estimate unknown motion parameters and the measured energy increases when the imaging object has an rotation. By using this property, an evaluation function is defined to estimate unknown values of rotational angle at each phase encoding step. Finally, the effectiveness of this presented techniques is shown by using a phantom image with simulated motion and a real image with 2-D translational shift and rotation.

Exploitation of Auxiliary Motion Vector in Video Coding for Robust Transmission over Internet (화상통신에서의 오류전파 제어를 위한 보조모션벡터 코딩 기법)

  • Lee, Joo-Kyong;Choi, Tae-Uk;Chung, Ki-Dong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.571-578
    • /
    • 2002
  • In this paper, we propose a video sequence coding scheme called AMV (Auxiliary Motion Vector) to minimize error propagation caused by transmission errors over the Internet. Unlike the conventional coding schemes the AMY coder, for a macroblock in a frame, selects two best matching blocks among several preceding frames. The best matching block, called a primary block, is used for motion compensation of the destination macroblock. The other block, called an auxiliary block, replaces the primary block in case of its loss at the decoder. When a primary block is corrupted or lost during transmission, the decoder can efficiently and simply suppress error propagation to the subsequent frames by replacing the block with an auxiliary block. This scheme has an advantage of reducing both the number and the impact of error propagations. We implemented the proposed coder by modifying H.263 standard coding and evaluated the performance of our proposed scheme in the simulation. The simulation results show that AMV coder is more efficient than the H.263 baseline coder at the high packet loss rate.