• Title/Summary/Keyword: 예측방법

Search Result 12,418, Processing Time 0.049 seconds

Association between Texture Analysis Parameters and Molecular Biologic KRAS Mutation in Non-Mucinous Rectal Cancer (원발성 비점액성 직장암 환자에서 자기공명영상 기반 텍스처 분석 변수와 KRAS 유전자 변이와의 연관성)

  • Sung Jae Jo;Seung Ho Kim;Sang Joon Park;Yedaun Lee;Jung Hee Son
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.2
    • /
    • pp.406-416
    • /
    • 2021
  • Purpose To evaluate the association between magnetic resonance imaging (MRI)-based texture parameters and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in patients with non-mucinous rectal cancer. Materials and Methods Seventy-nine patients who had pathologically confirmed rectal non-mucinous adenocarcinoma with or without KRAS-mutation and had undergone rectal MRI were divided into a training (n = 46) and validation dataset (n = 33). A texture analysis was performed on the axial T2-weighted images. The association was statistically analyzed using the Mann-Whitney U test. To extract an optimal cut-off value for the prediction of KRAS mutation, a receiver operating characteristic curve analysis was performed. The cut-off value was verified using the validation dataset. Results In the training dataset, skewness in the mutant group (n = 22) was significantly higher than in the wild-type group (n = 24) (0.221 ± 0.283; -0.006 ± 0.178, respectively, p = 0.003). The area under the curve of the skewness was 0.757 (95% confidence interval, 0.606 to 0.872) with a maximum accuracy of 71%, a sensitivity of 64%, and a specificity of 78%. None of the other texture parameters were associated with KRAS mutation (p > 0.05). When a cut-off value of 0.078 was applied to the validation dataset, this had an accuracy of 76%, a sensitivity of 86%, and a specificity of 68%. Conclusion Skewness was associated with KRAS mutation in patients with non-mucinous rectal cancer.

Assessment of Additional MRI-Detected Breast Lesions Using the Quantitative Analysis of Contrast-Enhanced Ultrasound Scans and Its Comparability with Dynamic Contrast-Enhanced MRI Findings of the Breast (유방자기공명영상에서 추가적으로 발견된 유방 병소에 대한 조영증강 초음파의 정량적 분석을 통한 진단 능력 평가와 동적 조영증강 유방 자기공명영상 결과와의 비교)

  • Sei Young Lee;Ok Hee Woo;Hye Seon Shin;Sung Eun Song;Kyu Ran Cho;Bo Kyoung Seo;Soon Young Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.4
    • /
    • pp.889-902
    • /
    • 2021
  • Purpose To assess the diagnostic performance of contrast-enhanced ultrasound (CEUS) for additional MR-detected enhancing lesions and to determine whether or not kinetic pattern results comparable to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast can be obtained using the quantitative analysis of CEUS. Materials and Methods In this single-center prospective study, a total of 71 additional MR-detected breast lesions were included. CEUS examination was performed, and lesions were categorized according to the Breast Imaging-Reporting and Data System (BI-RADS). The sensitivity, specificity, and diagnostic accuracy of CEUS were calculated by comparing the BI-RADS category to the final pathology results. The degree of agreement between CEUS and DCE-MRI kinetic patterns was evaluated using weighted kappa. Results On CEUS, 46 lesions were assigned as BI-RADS category 4B, 4C, or 5, while 25 lesions category 3 or 4A. The diagnostic performance of CEUS for enhancing lesions on DCE-MRI was excellent, with 84.9% sensitivity, 94.4% specificity, and 97.8% positive predictive value. A total of 57/71 (80%) lesions had correlating kinetic patterns and showed good agreement (weighted kappa = 0.66) between CEUS and DCE-MRI. Benign lesions showed excellent agreement (weighted kappa = 0.84), and invasive ductal carcinoma (IDC) showed good agreement (weighted kappa = 0.69). Conclusion The diagnostic performance of CEUS for additional MR-detected breast lesions was excellent. Accurate kinetic pattern assessment, fairly comparable to DCE-MRI, can be obtained for benign and IDC lesions using CEUS.

Safety and Efficacy of Ultrasound-Guided Percutaneous Core Needle Biopsy of Pancreatic and Peripancreatic Lesions Adjacent to Critical Vessels (주요 혈관 근처의 췌장 또는 췌장 주위 병변에 대한 초음파 유도하 경피적 중심 바늘 생검의 안전성과 효율성)

  • Sun Hwa Chung;Hyun Ji Kang;Hyo Jeong Lee;Jin Sil Kim;Jeong Kyong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1207-1217
    • /
    • 2021
  • Purpose To evaluate the safety and efficacy of ultrasound-guided percutaneous core needle biopsy (USPCB) of pancreatic and peripancreatic lesions adjacent to critical vessels. Materials and Methods Data were collected retrospectively from 162 patients who underwent USPCB of the pancreas (n = 98), the peripancreatic area adjacent to the portal vein, the paraaortic area adjacent to pancreatic uncinate (n = 34), and lesions on the third duodenal portion (n = 30) during a 10-year period. An automated biopsy gun with an 18-gauge needle was used for biopsies under US guidance. The USPCB results were compared with those of the final follow-up imaging performed postoperatively. The diagnostic accuracy and major complication rate of the USPCB were calculated. Multiple factors were evaluated for the prediction of successful biopsies using univariate and multivariate analyses. Results The histopathologic diagnosis from USPCB was correct in 149 (92%) patients. The major complication rate was 3%. Four cases of mesenteric hematomas and one intramural hematoma of the duodenum occurred during the study period. The following factors were significantly associated with successful biopsies: a transmesenteric biopsy route rather than a transgastric or transenteric route; good visualization of targets; and evaluation of the entire US pathway. In addition, the number of biopsies required was less when the biopsy was successful. Conclusion USPCB demonstrated high diagnostic accuracy and a low complication rate for the histopathologic diagnosis of pancreatic and peripancreatic lesions adjacent to critical vessels.

Comparison of the Imaging Features of Lobular Carcinoma In Situ and Invasive Lobular Carcinoma of the Breast (유방의 소엽상피내암과 침윤성 소엽암의 영상의학적 소견 비교)

  • Ga Young Yoon;Joo Hee Cha;Hak Hee Kim;Min Seo Bang;Hee Jin Lee;Gyungyub Gong
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1231-1245
    • /
    • 2021
  • Purpose To investigate the usefulness of imaging features for differentiating between small lobular carcinoma in situ (LCIS) and invasive lobular carcinoma (ILC). Materials and Methods It included 52 female with LCISs (median 45 years, range 32-67 years) and 180 female with ILCs (median 49 years, range 36-75 years), with the longest diameter of ≤ 2 cm, who were evaluated between January 2012 and December 2016. All the female underwent mammography and ultrasonography. Twenty female with LCIS and 150 female with ILC underwent MRI. The clinical and imaging features were compared, and multivariate analysis was performed to identify the independent predictors of LCIS. Female with LCIS were also sub-grouped by lesion size and compared with the female with ILC. Results Multivariate analysis showed that younger age (odds ratio [OR] = 1.100), smaller lesion size (OR = 1.103), oval or round shape (OR = 4.098), parallel orientation (OR = 5.464), and isoechotexture (OR = 3.360) were significant independent factors predictive of LCIS. The area under the receiver operating characteristic curve for distinguishing LCIS from ILC was 0.904 (95% confidence interval, 0.857-0.951). Subgroup analysis showed that benign features were more prevalent in female with smaller LCISs (≤ 1 cm) than in those with ILC. Conclusion Small LCISs tend to demonstrate more benign features than small ILCs. Several imaging features are independently predictive of LCIS.

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model (0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구)

  • Eunji Lee;Won Yang;Uendo Lee;Youngjae Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

Developing domestic flood resilience indicators and assessing applicability and significance (국내 홍수회복력 지표 개발과 적용성 및 중요도 평가)

  • Kim, Soohong;Jung, Kichul;Kang, Hyeongsik;Shin, Seoyoung;Kim, Jieun;Park, Daeryong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.533-548
    • /
    • 2024
  • Due to climate change with extreme weather events, occurrences of unprecedented heavy rainfall have become more frequent. Since it is difficult to perfectly predict and prevent flood damages, the limitation of traditional prevention-centered approaches has come a issue. The concept of "resilience" has therefore been developed which emphasizes the ability to swiftly recover from damages to previous states or to even better conditions. In this study, we 1) developed a total of 20 domestic flood resilience indicators based on the 4R principles (Redundancy, Robustness, Rapidity, Resourcefulness), 2) conducted applicability evaluations targeting specific disaster-prone areas, and 3) assessed the importance of each indicator through Analytic Hierarchy Process (AHP) analysis with flood-related experts. To confirm the suitability of the developed flood resilience indicators, multicollinearity analysis was performed, and the results indicated that all 20 indicators had tolerance limits above 0.1 and Variance Inflation Factors (VIF) below 10, demonstrating suitability as factors. Furthermore, evaluations of proposed indicators were carried out targeting disaster-prone areas in 2022(21 areas), and AHP analysis was utilized to determine the relative importance of each indicator. The analysis revealed that the importance of each indicator was as follows: Robustness 0.46, Rapidity 0.22, Redundancy 0.17, and Resourcefulness 0.16, with Robustness exhibiting the highest importance. Regarding the sub-indicators that had the greatest influence on each 4R component, river embankment maintenance emerged as the most influential for Robustness, healthcare services for Rapidity, fiscal autonomy of local governments for Resourcefulness, and drainage facilities for Redundancy.

Evaluation of flash drought characteristics using satellite-based soil moisture product between North and South Korea (위성영상 기반 토양수분을 활용한 남북한의 돌발가뭄 특성 비교)

  • Lee, Hee-Jin;Nam, Won-Ho;Jason A. Otkin;Yafang Zhong;Xiang Zhang;Mark D. Svoboda
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.509-518
    • /
    • 2024
  • Flash drought is a rapid-onset drought that occurs rapidly over a short period due to abrupt changes in meteorological and environmental factors. In this study, we utilized satellite-based soil moisture product from the Advanced Microwave Scanning Radiometer-2(AMSR2) ascending X-band to calculate the weekly Flash Drought Intensity Index (FDII). We also analyzed the characteristics of flash droughts on the Korean Peninsula over a 10-year period from 2013 to 2022. The analysis of monthly spatial distribution patterns of the irrigation period across the Korean Peninsula revealed significant variations. In North Korea (NK), a substantial increase in the rate of intensification (FD_INT) was observed due to the rapid depletion of soil moisture, whereas South Korea (SK) experienced a significant increase in drought severity (DRO_SEV). Additionally, regional time series analysis revealed that both FD_INT and DRO_SEV were significantly high in the Gangwon province of both NK and SK. The estimation of probability density by region revealed a clear difference in FD_INT between NK and SK, with SK showing a higher probability of severe drought occurrence primarily due to the high values of DRO_SEV. As a result, it is inferred that the occurrence frequency and damage of flash droughts in NK are higher than those in SK, as indicated by the higher density of large FDII values in the NK region. We analyzed the correlation between DRO_SEV and the Evaporative Stress Index (ESI) across the Korean Peninsula and confirmed a positive correlation ranging from 0.4 to 0.6. It is concluded that analyzing overall drought conditions through the average drought severity holds high utility. These findings are expected to contribute to understanding the characteristics of flash droughts on the Korean Peninsula and formulating post-event response plans.

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.

Prognostic Relevance of WHO Classification and Masaoka Stage in Thymoma (흉선종양에서의 WHO 분류와 Masaoka 병기, 임상양상간의 상관관계연구)

  • Kang Seong Sik;Chun Mi Sun;Kim Yong Hee;Park Seung Il;Eeom Dae W.;Ro Jaee Y.;Kim Dong Kwan
    • Journal of Chest Surgery
    • /
    • v.38 no.1 s.246
    • /
    • pp.44-49
    • /
    • 2005
  • Although thymomas are relatively common mediastinal tumors, to date not only has a universal system of pathologic classification not been established but neither has a clearly defined predictable relationship between treatment and prognosis been made. Recently, a new guideline for classification was reported by WHO, and efforts, based on this work, have been made to better define the relationship between treatment and pro­gnostic outcome. In the present study a comparative analysis between the WHO classification and Masaoka stage system with the clinical disease pattern was conducted. Material and Method: A total of 98 patients undergoing complete resection for mediastinal thymoma between Juanuary 1993 and June 2003 were included in the present study. The male female ratio was 48 : 50 and the mean age at operation was $49.6{\pm}13.9\;years.$ A retrospective analytic comparison studying the relationship between the WHO classification and the Masaoka stage system with the clinical disease pattern of thymoma was conducted. Pathologic slide specimens were carefully examined, details of postoperative treatment were documented, and a relationship with the prognostic outcome and recurrence was studied. Result: There were 7 patients in type A according to the WHO system of classification, 14 in AB, 28 in B 1, 23 in B2, 18 in B3, and 9 in type C. The study of the relationship between the Masaoka stage and WHO classification system showed 4 patients to be in WHO system type A, 7 in type AB, 22 in B 1, 17 in B2, and 3 in type B3 among 53 $(54{\%})$ patients shown to be in Masaoka stage I. Among 28 $(28.5{\%})$ patients in Masaoka stage II system, there were 2 patients in type A, 7 in AB, 4 in B 1, 2 in B2, 8 in B3, and 5 in type C. Among 15 $(15.3{\%})$ in Masaoka stage III, there were 1 patient in type B1, 3 in B2, 7 in B3, and 4 in type C. Finally, among 2 $(2{\%})$ patients found to be in Masaoka stage IV there was 1 patient in type B1, and 1 in type B2. The mean follow up duration was $28{\pm}6.8$ months. There were 3 deaths in the entire series of which 2 were in type B2 (Masaoka stages III and IV), and 1 was in type C (Masaoka stage II). Of the patients that experienced relapse, 6 patients remain alive of which 2 were in type B2 (Masaoka III), 2 in type B3 (Masaoka I and III) and 2 in type C (Masaoka stage II). The 5 year survival rate by the Kaplan-Meier method was $90{\%}$ for those in type B2 WHO classification system, $87.5{\%}$ for type C. The 5 year freedom from recurrence rate was $80.7{\%}$ for those in WHO type B2, $81.6{\%}$ for those in type B3, and $50{\%}$ for those in type C. By the Log-Rank method, a statistically significant correlation between survival and recurrence was found with the WHO system of classification (p<0.05). An analysis of the relationship between the WHO classification and Masaoka stage system using the Spearman correction method, showed a slope=0.401 (p=0.023), showing a close correlation. Conclusion: As type C of the WHO classification system is associated with a high postoperative mortality and recurrence rate, aggressive treatment postoperatively and meticulous follow up are warranted. The WHO classification and Masaoka stage system were found to have a close relationship with each other and either the WHO classification method or the Masaoka stage system may be used as a predict prognostic outcome of Thymoma.