• Title/Summary/Keyword: 예측도 모델

Search Result 10,537, Processing Time 0.036 seconds

Modeling and Prediction of Time Series Data based on Markov Model (마코프 모델에 기반한 시계열 자료의 모델링 및 예측)

  • Cho, Young-Hee;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • Stock market prices, economic indices, trends and changes of social phenomena, etc. are categorized as time series data. Research on time series data has been prevalent for a while as it could not only lead to valuable representation of data but also provide future trends as well as changes in direction. We take a conventional model based approach, known as Markov chain modeling for the prediction on stock market prices. To improve prediction accuracy, we apply Markov modeling over carefully selected intervals of training data to fit the trend under consideration to the model. Another method we take is to apply clustering to data and build models of the resultant clusters. We confirmed that clustered models are better off in predicting, however, with the loss of prediction rate.

Development of Microcellular Radio Propagation Prediction Model in the 8 GHz Bands (8 GHz 대역에서의 마이크로셀용 전파전파 예측 모델 개발)

  • Song, Ki-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1212-1223
    • /
    • 2006
  • Microwave(M/W) bands, though having great demand in wireless services, have been used mostly for long distance communications. As a result, the studies on their mobile radio models have been made less than on VHF/UHF. However, as the mobile communication services with M/W bands have been increasing, the development of a more accurate prediction model of the mobile radio environments has been demanded. The development of a reliable radio prediction model in the mobile radio environments requires the measurement and analysis of the characteristics of the radio waves according to reflection, diffraction and scattering of radio signals in various mobile radio environments. The proposed 8 GHz band radio prediction models have 2 different categories: (1) LOS model and (2) non-LOS model. The LOS model predicts signal strength using the analytic result with measured pathless exponents for the waves direct and reflected by ground and buildings, and the non-LOS model suggests a prediction model of received power by calculating the signal variations after diffraction.

Recurrent Neural Network based Prediction System of Agricultural Photovoltaic Power Generation (영농형 태양광 발전소에서 순환신경망 기반 발전량 예측 시스템)

  • Jung, Seol-Ryung;Koh, Jin-Gwang;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.825-832
    • /
    • 2022
  • In this paper, we discuss the design and implementation of predictive and diagnostic models for realizing intelligent predictive models by collecting and storing the power output of agricultural photovoltaic power generation systems. Our model predicts the amount of photovoltaic power generation using RNN, LSTM, and GRU models, which are recurrent neural network techniques specialized for time series data, and compares and analyzes each model with different hyperparameters, and evaluates the performance. As a result, the MSE and RMSE indicators of all three models were very close to 0, and the R2 indicator showed performance close to 1. Through this, it can be seen that the proposed prediction model is a suitable model for predicting the amount of photovoltaic power generation, and using this prediction, it was shown that it can be utilized as an intelligent and efficient O&M function in an agricultural photovoltaic system.

AI-Based Particle Position Prediction Near Southwestern Area of Jeju Island (AI 기법을 활용한 제주도 남서부 해역의 입자추적 예측 연구)

  • Ha, Seung Yun;Kim, Hee Jun;Kwak, Gyeong Il;Kim, Young-Taeg;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.72-81
    • /
    • 2022
  • Positions of five drifting buoys deployed on August 2020 near southwestern area of Jeju Island and numerically predicted velocities were used to develop five Artificial Intelligence-based models (AI models) for the prediction of particle tracks. Five AI models consisted of three machine learning models (Extra Trees, LightGBM, and Support Vector Machine) and two deep learning models (DNN and RBFN). To evaluate the prediction accuracy for six models, the predicted positions from five AI models and one numerical model were compared with the observed positions from five drifting buoys. Three skills (MAE, RMSE, and NCLS) for the five buoys and their averaged values were calculated. DNN model showed the best prediction accuracy in MAE, RMSE, and NCLS.

Development and Evaluation of an Ensemble Forecasting System for the Regional Ocean Wave of Korea (앙상블 지역 파랑예측시스템 구축 및 검증)

  • Park, JongSook;Kang, KiRyong;Kang, Hyun-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • In order to overcome the limitation of deterministic forecast, an ensemble forecasting system for regional ocean wave is developed. This system predicts ocean wind waves based on the meteorological forcing from the Ensemble Prediction System for Global of the Korea Meteorological Administration, which is consisted of 24 ensemble members. The ensemble wave forecasting system is evaluated by using the moored buoy data around Korea. The root mean squared error (RMSE) of ensemble mean showed the better performance than the deterministic forecast system after 2 days, especially RMSE of ensemble mean is improved by 15% compared with the deterministic forecast for 3-day lead time. It means that the ensemble method could reduce the uncertainty of the deterministic prediction system. The Relative Operating Characteristic as an evaluation scheme of probability prediction was bigger than 0.9 showing high predictability, meaning that the ensemble wave forecast could be usefully applied.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

Research on Insurance Claim Prediction Using Ensemble Learning-Based Dynamic Weighted Allocation Model (앙상블 러닝 기반 동적 가중치 할당 모델을 통한 보험금 예측 인공지능 연구)

  • Jong-Seok Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.221-228
    • /
    • 2024
  • Predicting insurance claims is a key task for insurance companies to manage risks and maintain financial stability. Accurate insurance claim predictions enable insurers to set appropriate premiums, reduce unexpected losses, and improve the quality of customer service. This study aims to enhance the performance of insurance claim prediction models by applying ensemble learning techniques. The predictive performance of models such as Random Forest, Gradient Boosting Machine (GBM), XGBoost, Stacking, and the proposed Dynamic Weighted Ensemble (DWE) model were compared and analyzed. Model performance was evaluated using Mean Absolute Error (MAE), Mean Squared Error (MSE), and the Coefficient of Determination (R2). Experimental results showed that the DWE model outperformed others in terms of evaluation metrics, achieving optimal predictive performance by combining the prediction results of Random Forest, XGBoost, LR, and LightGBM. This study demonstrates that ensemble learning techniques are effective in improving the accuracy of insurance claim predictions and suggests the potential utilization of AI-based predictive models in the insurance industry.

Prediction of Groundwater Levels in Hillside Slopes Using the Autoregressive Model (AR 모델을 이용한 산사면에서의 지하수위 예측)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.67-76
    • /
    • 1993
  • Korea being composed of a number of mountains has been damaged and destroyed in lives and properties by the occurrence of many landslides during the wet seasons. Therefore, it is necessary to study the forecast system and risk analysis for the occurrence of landslides : the rise of groundwater levels due to rainfall is the main cause of landslides. In this paper, the autoregressive models are used to predict the grondwater levls using cases of both time invariant and time -varing autoregressive coefficients. In the former case, AR(1), AR(2), and AR(3) models are selected and their single-valued parameters are estimated to fit them to the observed groundwater level series. In the latter case, modified AR(1) and typical AR(2) models are used as process model and a discrete Kalman Filtering technique is utilized to estimate the parameters which are themselves a function of time. The results show that the real time forecast system using the time-varying autoregressive coefficinets as well as time -invariant AR model is good to predict the groundwater level in hillside slopes and we might get better result if we use the time-hourly rainfall intensity as well as the observed groundwater level.

  • PDF

A Modified Logistic Regression Model for Probabilistic Prediction of Debris Flow at the Granitic Rock Area and Its Application; Landslide Prediction Map of Gangreung Area (화강암질암지역 토석류 산사태 예측을 위한 로지스틱 회귀모델의 수정 및 적용 - 강릉지역을 대상으로)

  • Cho, Yong-Chan;Chae, Byung-Gon;Kim, Won-Young;Chang, Tae-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.115-128
    • /
    • 2007
  • This study proposed a modified logistic regression model for a probabilistic prediction of debris flow on natural terrain at the granitic rock area. The modified model dose not contain any categorical factors that were used in the previous model and secured higher reliability of prediction than that of the previous one. The modified model is composed of lithology, two factors of geomorphology, and three factors of soil property. Verification result shows that the prediction reliability is more than 86%. Using the modified regression model, the landslide prediction maps were established. In case of Sacheon area, the prediction map showed that the landslide occurrence was not well corresponded with the model since, even though the forest-fred area was distributed on the center of the model, no factors were considered for the landslide predictions. On the other hand, the prediction model was well corresponded with landslide occurrence at Jumunjin-Yeongok area. The prediction model developed in this study has very high availability to employ in other granitic areas.

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.