• Title/Summary/Keyword: 예측도 모델

Search Result 10,537, Processing Time 0.042 seconds

Hualien 대형내진모델의 지진응답 예측해석

  • 윤철호;김문수;이상국;현창헌;윤정방;김재민
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.993-998
    • /
    • 1995
  • 본 연구는 국제공동연구로 수행중인 Hualien 대형내진모델시험사업중 모델구조물에 대한 지진 응답 예측해석(blind prediction analysis)에 관한 것이다. 이 해석은 축대칭 무한요소를 이용하여 개발한 전산프로그램 KIESSI와 유연체적법에 의한 전산프로그램 SASSI를 이용하여 수행하였으며, 구조물 및 지반 특성은 뒷채움이 완료된 모델구조물에 대한 통일모델과 예측 후 상관해석 결과를 사용하였다. 그 결과 지진응답 예측해석 결과는 계측된 지진응답과 비교적 잘 일치하였으나 더 좋은 해석결과를 얻기 위해서는 구조물 및 지반 특성을 좀 더 수정할 필요가 있음을 알 수 있었다.

  • PDF

Learning Achievement Prediction Model based on Deep Learning (딥러닝 기반의 학습 성취 예측 모델)

  • Lee, Myung-Suk;Pak, Ju-Geon;Lee, Joo-Hwa
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.245-247
    • /
    • 2021
  • 최근 코로나 19로 인하여 온라인 강의가 증가하고 있으며 이를 활용한 학습 분석에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 학습 분석 중 학습 결과에 영향을 미칠 수 있는 학습 활동 데이터를 수집하여 학습 결과를 예측하는 모델을 설계하고자 한다. 예측 모델은 기계학습을 이용하며 이전 학기의 학습 결과 데이터를 학습시켜 학습 결과에 영향을 미치는 학습 활동 데이터를 도출한다. 도출된 데이터를 이용하여 차후 학습자의 학습 결과를 예측한다. 학습 결과를 예측하기 위한 모델로 딥러닝의 DNN을 활용한다. 향후 연구로는 예측한 결과를 바탕으로 학습자의 학습 동기 부여와 학습 지도 방향을 정하는 것이다.

  • PDF

Battery pack internal cell imbalance characteristic parameter analysis and autoregression model for prognosis of over discharging (배터리 팩 내부 셀 불균형 특성 파라미터 분석 및 자기 회귀 모델 기반 과방전 사전 예측 알고리즘 연구)

  • Park, Jinhyeong;Kim, Gunwoo;Lee, Miyoung;Kim, Min-O;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.215-217
    • /
    • 2020
  • 본 논문은 배터리 팩 내부 셀 파라미터의 불균일도에 대한 분석을 실시하고 이를 기반으로 과방전을 사전에 진단할 수 있는 방법을 제안한다. 이를 위해서 배터리 팩 내부 셀간 편차가 발생하는 셀을 선정하여 두 셀간 특성 분석을 실시하였으며, 이를 기준으로 예측 모델을 구성하였다. 예측 성능을 통해 배터리 전압 예측 성능에 영향을 미치는 인자를 분석하였으며, 배터리 전기적 등가회로 모델을 기반으로 예측 모델을 제안한다. 예측 모델은 실제 과방전이 발생한 셀을 기준으로 실험데이터와 비교하여 예측 성능을 검증하였다.

  • PDF

Interpretable Deep Learning Based On Prototype Generation (프로토타입 생성 기반 딥 러닝 모델 설명 방법)

  • Park, Jae-hun;Kim, Kwang-su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.23-26
    • /
    • 2022
  • 딥 러닝 모델은 블랙 박스 (Black Box) 모델로 예측에 대한 근거를 제시하지 못해 신뢰성이 떨어지는 단점이 존재한다. 이를 해결하기 위해 딥 러닝 모델에 설명력을 부여하는 설명 가능한 인공지능 (XAI) 분야 연구가 활발하게 이루어지고 있다. 본 논문에서는 모델 예측을 프로토타입을 통해 설명하는 딥 러닝 모델을 제시한다. 즉, "주어진 이미지는 티셔츠인데, 그 이유는 티셔츠를 대표하는 모양의 프로토타입과 닮았기 때문이다."의 형태로 딥 러닝 모델을 설명한다. 해당 모델은 Encoder, Prototype Layer, Classifier로 구성되어 있다. Encoder는 Feature를 추출하는 데 활용하고 Classifier를 통해 분류 작업을 수행한다. 모델이 제시하는 분류 결과를 설명하기 위해 Prototype Layer에서 가장 유사한 프로토타입을 찾아 설명을 제시한다. 실험 결과 프로토타입 생성 기반 설명 모델은 기존 이미지 분류 모델과 유사한 예측 정확도를 보였고, 예측에 대한 설명력까지 확보하였다.

  • PDF

Customer Churn Prediction Using RNN (RNN을 이용한 고객 이탈 예측 및 분석)

  • Lee, Seihee;Lee, Jee-Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • Lee, Ji-Yeong;Kim, Jong-U
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

임계 열유속(CHF) 상관식 형태와 적용 방법에 따른 예측 오차 및 여유도

  • 백원필;장순흥;황대현
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.49-59
    • /
    • 1997
  • 본 기술 보고는 임계 열유속(Critical Heat Flux; CHF)을 예측하기 위해 사용되고 있는 상관식의 형태와 적용 방법, 이에 따른 예측 오차와 여유도의 변화 등을 종합적으로 분석한다. CHF 현상에 대해서는 지난 반 세기 동안 발생 메커니즘, 예측 모델, 설계에의 적용 방법 등에 대한 연구가 광범위하게 수행되어 대부분의 운전 조건에 대해 신뢰할만한 예측 모델들이 확립되어 있다. 그러나 예측 모델의 이용에서 가장 중요한 기준이 되는 예측 오차의 의미가 잘못 이해되는 경우가 많으므로, 이 글에서는 예측 모델의 형태 및 적용 방법에 따라 예측 오차가 달라지는 원인을 명확하게 해석하고, 실제 계산을 통하여 예시하였다. 그리고 상관식 형태 및 이용 방법에 따라 임계 열유속비(Critical Heat Flux Ratio: CHFR)와 임계 출력비(Critical Power Ratio; CPR)가 어떠한 관계를 갖는가를 논의하였다.

  • PDF

Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models (생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용)

  • Sua Kim;Mi Ju Kwon;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.209-216
    • /
    • 2024
  • Real estate market prices are determined by various factors, including macroeconomic variables, as well as the influence of a variety of unstructured text data such as news articles and social media. News articles are a crucial factor in predicting real estate transaction prices as they reflect the economic sentiment of the public. This study utilizes sentiment analysis on news articles to generate a News Sentiment Index score, which is then seamlessly integrated into a real estate price prediction model. To calculate the sentiment index, the content of the articles is first summarized. Then, using AI, the summaries are categorized into positive, negative, and neutral sentiments, and a total score is calculated. This score is then applied to the real estate price prediction model. The models used for real estate price prediction include the Multi-head attention LSTM model and the Vector Auto Regression model. The LSTM prediction model, without applying the News Sentiment Index (NSI), showed Root Mean Square Error (RMSE) values of 0.60, 0.872, and 1.117 for the 1-month, 2-month, and 3-month forecasts, respectively. With the NSI applied, the RMSE values were reduced to 0.40, 0.724, and 1.03 for the same forecast periods. Similarly, the VAR prediction model without the NSI showed RMSE values of 1.6484, 0.6254, and 0.9220 for the 1-month, 2-month, and 3-month forecasts, respectively, while applying the NSI led to RMSE values of 1.1315, 0.3413, and 1.6227 for these periods. These results demonstrate the effectiveness of the proposed model in predicting apartment transaction price index and its ability to forecast real estate market price fluctuations that reflect socio-economic trends.

Evaluation of the Prediction Performance of FDS Combustion Models for the CO Concentration of Gas Fires in a Compartment (구획실 내 가스연료 화재의 CO 농도에 대한 FDS 연소모델의 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo;Hwang, Chel-Hong;Yun, Hong-Seok
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The prediction performance of combustion models in the Fire Dynamics Simulator (FDS) were evaluated by comparing with experiment for compartment propane gas fires. The mixture fraction model in the FDS v5.5.3 and Eddy Dissipation Concept (EDC) model in the FDS v6.6.3 were adopted in the simulations. Four chemical reaction mechanisms, such as 1-step Mixing Controlled, 2-step Mixing Controlled, 3-step Mixing Controlled and 3-step Mixed (Mixing Controlled + finite chemical reactions) reactions, were implemented in the EDC model. The simulation results with each combustion model showed similar level for the temperature inside the compartment. The prediction performance of FDS with each combustion model showed significant differences for the CO concentration while no distinguished differences were identified for the $O_2$ and $CO_2$ concentrations. The EDC 3-step Mixing Controlled largely over-predicted the CO concentration obtained by experiment and the mixture fraction model under-predicted the experiment slightly. The EDC 3-step Mixed showed the best prediction performance for the CO concentration and the EDC 2-step Mixing Controlled also predicted the CO concentration reasonably. The EDC 1-step Mixing Controlled significantly under-predict the experimental CO concentration when the previously suggested CO yield was adopted. The FDS simulation with the EDC 1-step Mixing Controlled showed difficulties in predicting the $CO_2$ concentration when the CO yield was modified to predict the CO concentration reasonably.

Estimation Model for Freight of Container Ships using Deep Learning Method (딥러닝 기법을 활용한 컨테이너선 운임 예측 모델)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.574-583
    • /
    • 2021
  • Predicting shipping markets is an important issue. Such predictions form the basis for decisions on investment methods, fleet formation methods, freight rates, etc., which greatly affect the profits and survival of a company. To this end, in this study, we propose a shipping freight rate prediction model for container ships using gated recurrent units (GRUs) and long short-term memory structure. The target of our freight rate prediction is the China Container Freight Index (CCFI), and CCFI data from March 2003 to May 2020 were used for training. The CCFI after June 2020 was first predicted according to each model and then compared and analyzed with the actual CCFI. For the experimental model, a total of six models were designed according to the hyperparameter settings. Additionally, the ARIMA model was included in the experiment for performance comparison with the traditional analysis method. The optimal model was selected based on two evaluation methods. The first evaluation method selects the model with the smallest average value of the root mean square error (RMSE) obtained by repeating each model 10 times. The second method selects the model with the lowest RMSE in all experiments. The experimental results revealed not only the improved accuracy of the deep learning model compared to the traditional time series prediction model, ARIMA, but also the contribution in enhancing the risk management ability of freight fluctuations through deep learning models. On the contrary, in the event of sudden changes in freight owing to the effects of external factors such as the Covid-19 pandemic, the accuracy of the forecasting model reduced. The GRU1 model recorded the lowest RMSE (69.55, 49.35) in both evaluation methods, and it was selected as the optimal model.