• Title/Summary/Keyword: 예측도 모델

Search Result 10,537, Processing Time 0.042 seconds

Characteristics and Implications of Sports Content Business of Big Tech Platform Companies : Focusing on Amazon.com (빅테크 플랫폼 기업의 스포츠콘텐츠 사업의 특징과 시사점 : 아마존을 중심으로)

  • Shin, Jae-hyoo
    • Journal of Venture Innovation
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • This study aims to elucidate the characteristics of big tech platform companies' sports content business in an environment of rapid digital transformation. Specifically, this study examines the market structure of big tech platform companies with a focus on Amazon, revealing the role of sports content within this structure through an analysis of Amazon's sports marketing business and provides an outlook on the sports content business of big tech platform companies. Based on two-sided market platform business models, big tech platform companies incorporate sports content as a strategy to enhance the value of their platforms. Therefore, sports content is used as a tool to enhance the value of their platforms and to consolidate their monopoly position by maximizing profits by increasing the synergy of platform ecosystems such as infrastructure. Amazon acquires popular live sports broadcasting rights on a continental or national basis and supplies them to its platforms, which not only increases the number of new customers and purchasing effects, but also provides IT solution services to sports organizations and teams while planning and supplying various promotional contents, thus creates synergy across Amazon's platforms including its advertising business. Amazon also expands its business opportunities and increases its overall value by supplying live sports contents to Amazon Prime Video and Amazon Prime, providing technical services to various stakeholders through Amazon Web Services, and offering Amazon Marketing Cloud services for analyzing and predicting advertisers' advertising and marketing performance. This gives rise to a new paradigm in the sports marketing business in the digital era, stemming from the difference in market structure between big tech companies based on two-sided market platforms and legacy global companies based on one-sided markets. The core of this new model is a business through the development of various contents based on live sports streaming rights, and sports content marketing will become a major field of sports marketing along with traditional broadcasting rights and sponsorship. Big tech platform global companies such as Amazon, Apple, and Google have the potential to become new global sports marketing companies, and the current sports marketing and advertising companies, as well as teams and leagues, are facing both crises and opportunities.

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.

The Causes of Conflict and the Effect of Control Mechanisms on Conflict Resolution between Manufacturer and Supplier (제조-공급자간 갈등 원인과 거래조정 방식의 갈등관리 효과)

  • Rhee, Jin Hwa
    • Journal of Distribution Research
    • /
    • v.17 no.4
    • /
    • pp.55-80
    • /
    • 2012
  • I. Introduction Developing the relationships between companies is very important issue to ensure a competitive advantage in today's business environment (Bleeke & Ernst 1991; Mohr & Spekman 1994; Powell 1990). Partnerships between companies are based on having same goals, pursuing mutual understanding, and having a professional level of interdependence. By having such a partnerships and cooperative efforts between companies, they will achieve efficiency and effectiveness of their business (Mohr and Spekman, 1994). However, it is difficult to expect these ideal results only in the B2B corporate transaction. According to agency theory which is the well-accepted theory in various fields of business strategy, organization, and marketing, the two independent companies have fundamentally different corporate purposes. Also there is a higher chance of developing opportunism and conflict due to natures of human(organization), such as self-interest, bounded rationality, risk aversion, and environment factor as imbalance of information (Eisenhardt 1989). That is, especially partnerships between principal(or buyer) and agent(or supplier) of companies within supply chain, the business contract itself will not provide competitive advantage. But managing partnership between companies is the key to success. Therefore, managing partnership between manufacturer and supplier, and finding causes of conflict are essential to improve B2B performance. In conclusion, based on prior researches and Agency theory, this study will clarify how business hazards cause conflicts on supply chain and then identify how developed conflicts have been managed by two control mechanisms. II. Research model III. Method In order to validate our research model, this study gathered questionnaires from small and medium sized enterprises(SMEs). In Korea, SMEs mean the firms whose employee is under 300 and capital is under 8 billion won(about 7.2 million dollar). We asked the manufacturer's perception about the relationship with the biggest supplier, and our key informants are denied to a person responsible for buying(ex)CEO, executives, managers of purchasing department, and so on). In detail, we contact by telephone to our initial sample(about 1,200 firms) and introduce our research motivation and send our questionnaires by e-mail, mail, and direct survey. Finally we received 361 data and eliminate 32 inappropriate questionnaires. We use 329 manufactures' data on analysis. The purpose of this study is to identify the anticipant role of business hazard (environmental dynamism, asset specificity) and investigate the moderating effect of control mechanism(formal control, social control) on conflict-performance relationship. To find out moderating effect of control methods, we need to compare the regression weight between low versus. high group(about level of exercised control methods). Therefore we choose the structural equation modeling method that is proper to do multi-group analysis. The data analysis is performed by AMOS 17.0 software, and model fits are good statically (CMIN/DF=1.982, p<.000, CFI=.936, IFI=.937, RMSEA=.056). IV. Result V. Discussion Results show that the higher environmental dynamism and asset specificity(on particular supplier) buyer(manufacturer) has, the more B2B conflict exists. And this conflict affect relationship quality and financial outcomes negatively. In addition, social control and formal control could weaken the negative effect of conflict on relationship quality significantly. However, unlikely to assure conflict resolution effect of control mechanisms on relationship quality, financial outcomes are changed by neither social control nor formal control. We could explain this results with the characteristics of our sample, SMEs(Small and Medium sized Enterprises). Financial outcomes of these SMEs(manufacturer or principal) are affected by their customer(usually major company) more easily than their supplier(or agent). And, in recent few years, most of companies have suffered from financial problems because of global economic recession. It means that it is hard to evaluate the contribution of supplier(agent). Therefore we also support the suggestion of Gladstein(1984), Poppo & Zenger(2002) that relational performance variable can capture the focal outcomes of relationship(exchange) better than financial performance variable. This study has some implications that it tests the sources of conflict and investigates the effect of resolution methods of B2B conflict empirically. And, especially, it finds out the significant moderating effect of formal control which past B2B management studies have ignored in Korea.

  • PDF

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Comparison of Property Changes of Black Jujube and Zizyphus jujube Extracts during Lactic Acid Fermentation (흑대추와 일반 건조대추의 추출 및 유산발효과정 중 특성 변화)

  • Auh, Mi Sun;Kim, Yi Seul;Ahn, Seung Joon;Ahn, Jun Bae;Kim, Kwang Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1346-1355
    • /
    • 2012
  • This study was carried out to investigate the characteristics of black jujube and Zizyphus jujube extracts during lactic acid fermentation. Both extracts were fermented using Lactobacillus fermentum YL-3. As a result, viable cell number rapidly increased until 24 hours, after which it gradually decreased. Before lactic acid fermentation, the $IC_{50}$ of black jujube, which was 0.014 mg/mL, was lower than that of Zizyphus jujube. Further, black jujube showed stronger antioxidant activity (374.21 mg AA eq/g) than Zizyphus jujube. Contents of total polyphenolics in both extracts were 15.46 mg/g and 13.61 mg/g, respectively, whereas contents of total flavonoids were 374.21 ${\mu}g/g$ and 64.25 ${\mu}g/g$. After lactic acid fermentation, there was no significant increase in DPPH or ABTS free radical scavenging activity. Total polyphenolic content of Zizyphus jujube decreased to 12.39 mg/g upon fermentation, whereas flavonoid content significantly increased to 291.58 ${\mu}g/g$. Further, polyphenolic and flavonoid contents of black jujube increased from 15.46 mg/g to 17.46 mg/g and from 374.21 ${\mu}g/g$ to 1,135.29 ${\mu}g/g$, respectively. These results demonstrate that 9-Times Steamed and Dried increased functional components. Especially, lactic acid fermented black jujube showed remarkably high antioxidant activity. These results confirm the potential use of lactic acid fermented black jujube as a valuable resource for the development of functional foods.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries (ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로)

  • Jun, Seung-pyo;Seo, Jinny;Yoo, Jae-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.175-196
    • /
    • 2022
  • Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers. According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness. This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.