Kim, Kun-Ho;Kim, Byung-Whan;Kim, Kyung-Nam;Hong, Jin-Han
Proceedings of the KIEE Conference
/
2003.07d
/
pp.2552-2554
/
2003
난수발생기 (Random generator-RG)와 GRNN을 이용한 분류기 설계방식을 제안하며, 이를 프로모터 염기서열의 분류에 적용한다. 주어진 난수범위에서 다중 분류기를 발생하였으며, 그 성능을 예측정확도와 분류민감도 측면에서 평가하였고, 분류민감도는 다시 전체와 개별적 프로모터에 대해서 세분화하여 평가하였다. 최적화된 분류기 상호간의 비교에서 제안된 기법은 모든 임계점에 대해서, 전체 분류민감도와 전체 예측정확도를 향상시키었으며, 이는 전체 분류 민감도에서 더 두드러졌다. 한편, 개별적 프로모터에 대한 분류민감도와 예측정확도도 평균적으로 향상되었다. 이 같은 결과로 제안된 기법이 분류와 예측성능을 동시에 증진하는데 매우 효과적임을 알 수 있었다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.2
/
pp.46-56
/
1999
A predictive controller is designed based upon stochastic methods for compensation time-delay effect on a system which has inherent time-delay caused by the spatial separation between controllers and actuators. The predictive controller estimates current outputs through linear prediction methods and probability functions utilizing previous outputs, and minimizes the malicious phenomena caused by the time-delay in precision control systems. To demonstrate effectiveness of this control methodology, we applied this algorithm for the control of a tele-operated DC servomotor. The experimental results show that this predictive controller is superior to the PID controller in terms of convergence-characteristics, and show that this controller expands the maximum allowable time-delay for a system maintaining the stability. Since the proposed predictor does not require models of plants - it requires only stochastic information for outputs --, it is a general scheme which can be applied for the control of systems which are difficult to model or the compensator of PID control.
본 논문은 비정상 시계열 예측을 위한 다중모델 퍼지 시스템과, 제안된 시스템의 최적화를 위한 유전 알고리즘의 응용을 다룬다. 일반적으로, 퍼지 예측시스템의 성능은 비선형 데이터가 가지고 있는 다양한 패턴이나 법칙성, 경향 등을 잘 분석하고 시스템에 반영함으로써 개선될 수 있다. 따라서, 본 논문은 원형 시계열의 특성을 보다 잘 반영할 수 있는 그들의 차분데이터를 시스템에 적용하며, 생성 가능한 차분 데이터들 중 원형 시계열의 특징에 가까운 일부를 추출하여 다중모델 퍼지 예측 시스템을 구현함으로써 다양한 원형시계열의 패턴이나 법칙성 등이 고려될 수 있도록 하였다. 다중 모델 퍼지 시스템의 각각의 예측기에는 구조가 간단한 k-means 클러스터링 기법을 적용하여 구현의 용이성을 꽤하였으며, 성능평가를 통해 선택된 최종 예측기는 RCGKA(real-coded genetic k-means clustering algorithms)를 통해 더욱 최적화된 규칙기반을 가지게 함으로써 예측성능이 개선될 수 있도록 하였다. 본 논문에 사용된 최적화 기법인 RCGKA에는 또한 성능이 우수한 다양한 유전연산자를 도입하여 더욱 예측기 성능이 강화될 수 있도록 하였으며, 시뮬레이션을 통해 제안된 예측시스템의 효용성을 증명하였다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.245-247
/
1999
본 논문은 MPEG-2 TM 5 비디오 부호기의 움직임 예측(motion estimation) 처리과정을 소개한다. 비디오에는 공간의 중복성보다 시간의 중복성이 훨씬 많다. 따라서 시간의 중복성을 찾아내는 것이 압축의 효율을 높이는 중요한 척도가 된다. MPEG-2 부호기는 움직임 예측 알고리즘을 사용하여 시간의 중복성을 줄여 압축 효율을 높인다. 움직임 예측은 참조 블록의 위치로부터 원래 블록의 위치를 추정하여 최적의 움직임 벡터를 찾는 과정이다. PMEG-2에서의 움직임 예측은 full search 알고리즘을 사용하여 마지막으로 hlaf pel로 산출한다. 본 논문에서는 MPEG-2 움직임 예측 과정을 frame estimation, field estimation, picture 타입에 따른 estimation, 움직임 예측을 위한 블록 매칭 알고리즘, full search 방법 및 움직임 벡터에 대하여 소개한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.4
/
pp.602-610
/
2018
The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.
Jung, Sung Ho;Cho, Hyo Seob;Kim, Jeong Yup;Lee, Gi Ha
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.377-377
/
2019
본 연구에서는 LSTM 모형을 이용하여 갈수예보를 위한 월 단위 전망모형개발의 대상지점으로 이수 및 치수의 측면에서 아주 중요한 한강대교 지점을 선정하였으며 유량예보를 위하여 한강수계 19개 기상관측소의 월평균강수량, 월평균기온 및 3개 댐(소양,횡성,충주)의 월방류량을 사용하여 한강대교의 월 유량을 예측하였다. 1996년부터 2016년까지의 자료는 모형의 학습, 2017년 자료는 모형의 검증에 활용하였으며 가장 최근 건설된 횡성댐 방류량의 경우 1996년~2000년의 자료가 없으므로 2001년~2005년의 자료를 반복하여 학습에 활용하였다. 모형의 예측결과는 신경망 학습 시 한강대교 월유량자료를 포함한 결과와 미포함 결과를 도출하였으며, 모의결과의 재현성 분석을 위하여 월별 예측값과 실측값의 비율을 산정하였으며 1월부터 12월까지 12개 값을 평균하여 평균예측률을 산정하고 이를 홍수기(6월~10월) 및 비홍수기(1월~5월, 11월~12월)를 구분하였다. 딥러닝 학습 시 월유량을 포함한 경우의 예측결과가 학습 시 월유량을 포함하지 않았을 경우보다 상대적으로 좋은 정확도를 보이는 것으로 분석되었다. 다만, 신경망을 실제 갈수예보에 활용하기 위해서는 예측 기상정보인 월강우량, 월평균기온, 댐방류량만을 활용하여야 하는데 학습 시월유량 미포함 결과는 예측률이 매우 낮았으며, 신경망의 학습횟수가 늘어날 경우 학습자료 과적합(over-fitting)되어 정확도가 보다 저하되는 것으로 나타났다. 그래서 기존의 현재시간 t까지의 입력자료로 학습 후 익월(t+1)의 월유량을 예측하는 (t $\rightarrow$ t+1) 방법에서 현재시점 (t-n ~ t)까지의 입력자료를 이용하여 당월(t)의 월유량을 산정하는 (t$\rightarrow$t) 방법으로 재학습 후 모형검증을 수행한 결과 전술한 익월(t+1) 유량을 예측한 결과보다 재현성이 훨씬 향상된 것으로 분석되며평균예측률이 0.99로 홍수기 및 비홍수기에서도 뛰어난 정확성을 보이고 있다.
Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won;Yhang, Yoo Bin
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.226-226
/
2016
최근 이상기상현상과 기후변화로 인하여 국지적인 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 돌발 홍수피해가 증가하고 있다. 이러한 홍수 피해를 줄이기 위해서는 정확도가 우수한 초단시간(1~2시간 이내) 예측 강우량 정보가 필요하다. 본 연구에서는 집중호우에 대한 초단시간예보 및 실황 예측을 위해 시공간적으로 고해상도 자료를 제공할 수 있는 기상레이더 강우자료와 위성영상 자료를 결합하여 초단기 강수 예측기법 개발 연구를 수행하였다. 또한 기상레이더 강우량은 지상강우관측에 비해 정확성이 낮고, 많은 불확실성을 포함하고 있으므로, 위성영상에서 산출되는 강우자료와 결합하여 강우추정의 정확도를 개선하고자 하였다. 레이더 볼륨자료에서 반사도 자료를 추출하여, 1.5km CAPPI(Constant Altitude Plan Position Indicator) 자료를 생성하고, 반사도 CAPPI 자료의 패턴 상관분석을 통하여 강우시스템의 최적 이동벡터를 산출하였다. 또한 이동벡터를 고려하여 시공간적으로 외삽하여 강우이동 예측 모델을 개발하고, 초기자료로 레이더와 천리안 위성(Communication, Ocean and Meteorological Satellite, COMS) 영상자료에서 생성되는 강우자료를 결합한 강수장 자료를 이용하여 강수 예측장을 생성하였다. 레이더-위성 결합 초단기 강우예측 모델의 정확성 검증을 위하여 2014년 8월 25일 부산 및 영남 지역에 발생한 집중호우 사례에 대하여 지상기상자동관측시스템(Automatic Weather System, AWS) 강우 측정 결과를 비교 분석 하였으며, 그 적용 가능성을 검증하였다. 초단기 강우예측 분석 결과 지상강우자료와의 오차가 발생하나, 추후 여러 통계적 후처리 과정을 통하여 그 성능이 개선될 것으로 보이며, 보다 정확한 강우량 예측을 위해서는 지속적인 알고리즘 개선 및 모형의 검 보정이 필요할 것으로 사료된다.
전력수요의 증가에 따라 전력계통의 대규모, 고엊압화 되는 현실에서 변압기의 사고는 사회여러분야에 큰 영향을 주게 되었다. 이에 세계 여러나라에서는 변압기 사고 예방진단시스템을 연구하고 있으며 일부는 실제 설치, 운영중에 있다. 본 논문에서는 변압기사고진단의 일환으로 변압기 사고의 원인이 되는 부분방전을 제거할 때 방전점을 예측하여 비용과 시간을 줄이고자 하였다. 부분방전의 위치를 예측하는 방법으로 2개의 초음파 신호의 신호상관법을 이용하였으며 모의 변압기를 통한 실험에서 오차가 4%이하로 비교적 정확한 위치 예측이 가능함을 보여 주었다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.12
/
pp.1806-1814
/
1993
Efficient speech coders using tree coding combined with harmonic scaling are designed at the rate of 4.8 kilobitts/sec (kbps). A time domain harmonic scaling algorithm (TDHS) is used to compress input speech by a factor of two. This process allows the tree coder have 1.5 bits/sample for 4.8 kbps in the case of a 6.4 kHz sampling rate. In the backward adaptive tree coder, there are three components of the code generator, including a hybrid adaptive quantizer, a short-term predictor and a pitch predictor. The robustness of the tree coder is achieved by carefully choosing the input of the short term predictor adaptation. Also, inclusion of a smoother in the pitch predictor improves the error performance of tree coder in the noisy channel. Subjectively, tree coding combined with TDHS provides good quality speech at 4.8 kbps.
Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.4
/
pp.736-739
/
2009
In this paper, an efficient lossless compression algorithm using motion adaptation is proposed. It is divided into two parts: a motion adaptation based nonlinear predictor part and a residual data coding part. The proposed nonlinear predictor can reduce prediction error by learning from its past prediction errors using motion adaption. The predictor decides the proper selection of the intra and inter prediction values according to the past prediction error. The reduced error is coded by existing context adaptive coding method. Experimental results show that the proposed algorithm has the higher compression ratio than context modeling methods, such as FELICS, CALIC, and JPEG-LS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.