Journal of the Korea Society of Computer and Information
/
v.10
no.2
s.34
/
pp.87-95
/
2005
value prediction in high performance micro processors is a technique that exploits Instruction Level Parallelism(ILP) by predicting the outcome of an instruction and by breaking and executing true data dependences. In this paper, the mean Performance improvements by predictor according to a point of time for update of each table as well as prediction accuracy and Prediction rate are measured and assessed by comparison and analysis of value predictor that issues in parallel and run by predicting value, which is for Performance improvements of ILP in micro Processor. For the verification of its validity the SPECint95 benchmark through the simulation is compared by making use of execution driven system.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.3C
/
pp.336-342
/
2003
Noise predictive maximum likelihood(NPML) detector embeds noise prediction/whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This thesis random sequences are applied to linear channel. In perpendicular magnetic recording density KP=2.5, NP(121)ML and NP(1221)ML detection system which is based on a noise predictive PR-equalized signal are evaluated by the Performance through a computing simulation. Therefore, NPML systems are implemented and are verified by VHDL.
본 연구는 한국어의 발음상의 특징과 구조에 의해서 한국어를 음소별로 분리할 수 있음에 착안 하여, 자음과 모음으로 구성된 한국어 단음을 자음의 음소와 모음의 음소로 각각 분리하여 인식하는 새 로운 방법에 관한 연구이다. 특정 화자 2명에 대하여 한국어 단음 84자를 모음의 음소와 자음의 음소로 각각 분리하여 인삭한 실험결과 모음을 인식한 경우에는 선형 예측 계수를 이용하면 인식률이 95.2%이 고, 편자기 상관계수로 92.5%, 폴만트로 97.6%의 인식률을 얻었고, 자음을 인식한 경우에는 선형 예측 계수로 88.7%, 편자기 상관계수로 92.9%의 인식률을 얻었다. 또, 자음의 음소와 모음의 음소를 결합시킨 단음을 인식한 경우에는 선형 예측 계수로 83.9%, 편자기 상관계수로 86.3%의 인식률을 얻었다. 이 때, 각 음소들의 데이터의 수는 256개이고, 선형 예측 계수와 편자기 상관 계수와의 예측차는 15차이다. 이 와 같이 한국어를 자음의 음소와 모음의 음소로 분리하면 작은 데이터 양으로 처리 시간을 단축 시켜 한국어의 모든 단음, 단어, 연속음, 문장 등을 분석하고 인식할 수 있고, 또한 각 음소들을 원칙적으로 결합시켜 모든 한국어의 합성이 가능함을 알 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.7-7
/
2016
인도네시아 산불에 의한 연무는 동남아시아 인접한 국가들에 있어서 심각한 환경문제 중 하나이다. 국제적으로 심각한 문제를 야기하는 인도네시아의 산불은 건조기에 강수량이 적게 내리는 극심한 가뭄 조건에서 발생한다. 건조기 강수량을 모니터링 하는 것은 산불 발생 가능성을 예측하기 위해 중요하지만 산불을 사전에 예방하고 영향을 최소화하기에는 부족하다. 따라서 산불에 대한 선제적 사전예방을 위해서는 수개월의 선행예측 기간을 갖는 조기경보 시스템이 절실하다. 따라서 본 연구는 인도네시아 산불에 대한 선제적 대응을 위한 강수량 예측시스템을 개발하고 예측성을 평가하여 동남아시아 지역의 화재 연무 조기경보 시스템의 시제품(Prototype)을 개발하는데 있다. 강수량 예측을 위해서 APEC 기후센터의 계절예측정보의 활용 정도에 따라서 4가지 서로 다른 방법을 통합하여 사용하였다. 예측정보 기반의 방법들로는 대상지역의 강수량 예측을 위해서 대상 지역 상공의 계절예측 강수자료를 보정을 통해 직접적으로 사용하는 SBC (Simple Bias Correction) 방법과 대상 지역 상공의 강수 예측자료를 사용하는 대신에 지역 강수량과 높은 상관 관계를 보이는 다른 지역의 대리변수를 예측인자로 사용하는 MWR (Moving Window Regression) 방법이 있다. 또한 예측자료의 사용 없이 과거자료 기반의 기후지수(Climate Index) 중에서 지체시간을 고려하여 지역 강수량과 높은 상관관계를 갖는 경우 예측에 활용하는 관측자료 기반의 CIR (Climate Index Regression) 방법과 예측기반 MWR과 관측기반의 CIR 방법에서 선정된 예측인자를 동시에 활용하는 ITR (Integrated Time Regression) 방법이 사용되었다. 장기 강수량 예측은 보르네오 섬의 4개 지역에서 3개월 이하의 선행예측기간에 대하여 0.5 이상의 TCC (Temporal Correlation Coefficient)의 값을 보여 양호한 예측성능을 보였다. 예측된 강수량 자료는 위성기반 관측 강수량 및 관측 탄소 배출량 관계에서 결정된 강수량의 임계값과의 비교를 통해 산불발생 가능성으로 환산하였다. 개발된 조기경보 시스템은 산불 발생에 가장 취약한 해당지역의 건조기(8월~10월) 강수량을 4월부터 예측해 산불 연무에 대한 조기경보를 수행한다. 개발된 화재 연무조기경보 시스템은 지속적인 개선을 통해 현장 실효성을 높여 동남아국가 정부의 화재 및 산림관리자들에게 보급함으로써 동남아의 화재 연무로 인한 환경문제 해결에 기여할 수 있으리라 판단된다.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.14
no.8
/
pp.777-786
/
2003
The phase noise characteristics of the phase-locked loop frequency synthesizer were predicted based on the analysis for phase noise contribution of noise sources. The proposed phase noise model in this paper more accurately predicts the phase noise spectrum of frequency synthesizer. To accurately model the phase noise contribution of noise sources in frequency synthesizer, the phase noise sources were analyzed via modeling of the frequency divider and phase noise components using Leeson model for reference signal source and VCO. The phase noise transfer functions to VCO from noise sources were analyzed by superposition theory and linear operation of phase-locked loop. To evaluate the phase noise prediction model, the frequency synthesizers were fabricated and were evaluated by measured data and prediction data.
In this paper. we propose an effective mask estimation scheme for missing-feature reconstruction in order to achieve robust speech recognition under unknown noise environments. In the previous work. colored noise is used for training the mask classifer, which is generated from the entire frequency Partitioned signals. However it gives a limited performance under the restricted number of training database. To reflect the spectral events of more various background noise and improve the performance simultaneously. a new Bayesian classifier for mask estimation is proposed, which works independent of other frequency bands. In the proposed method, we employ the colored noise which is obtained by combining colored noises generated from each frequency band in order to reflect more various noise environments and mitigate the 'sparse' database problem. Combined with the cluster-based missing-feature reconstruction. the performance of the proposed method is evaluated on a task of noisy speech recognition. The results show that the proposed method has improved performance compared to the Previous method under white noise. car noise and background music conditions.
Proceedings of the Korean Society for Information Management Conference
/
2003.08a
/
pp.73-82
/
2003
본 연구에서는 웹 문서를 분류하기 위해 문서로부터 다양한 자질을 추출하고, 두 가지의 분류기를 통해 여러 개의 분류 예측치를 구한 다음, 그것들을 하나의 결과물로 통합하는 복합분류기를 사용하였다. 먼저 다양한 자질 집합에 대해 일반적으로 많이 사용되는 kNN(k nearest neighbor) 분류기와 나이브 베이즈(Naive Bayes) 분류기를 사용한 범주화 실험을 수행하고, 실험을 통해 나온 범주 예측치를 통합하는 복합 분류기들의 성능을 비교하였다. 또한 단일 분류기들을 통해 나온 모든 범주 예측치를 통합하는 과정을 수행하여, 단일 분류기만을 사용할 경우와 복합 분류기를 사용할 경우를 비교해 더 좋은 성능을 나타내는 분류기를 밝히고자 한다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2013.04a
/
pp.795-795
/
2013
본 논문에서는 에어컨 실외기의 내부 소음원에 의한 방사소음의 수준을 예측하기 위한 해석시스템을 구축하였다. 에어컨 실외기를 구성하는 여러 구성품을 내부 모델과 외부 모델로 구분하여 모델링하고, 주요한 소음원에 대한 최소한의 해석을 통하여 에어컨 실외기의 방사소음 수준을 예측하였다. 에어컨 실외기의 주요한 소음원 데이터를 실험을 통하여 계측하고, 이를 소음원 입력값으로 하는 진동해석 및 방사소음해석을 실시하여 구성품별 기여도를 예측 및 내부 구성품에 의한 소음원 데이터를 도출하였다. 해석을 통해 도출된 소음원 데이터를 이용하여 구조-음향 연성해석을 실시하여 방사소음수준을 예측하고, 실험을 통한 계측결과와 비교하였다.
Kim, Ho-Jun;Uranchimeg, Sumiya;Ryou, Minsuk;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.276-276
/
2021
최근 댐과 같은 수공구조물의 건설로 대규모 홍수피해는 급격히 줄어들었지만, 돌발홍수(flash flood)로 인한 저지대 침수 등의 도시홍수 발생빈도가 급증하고 있다. 2020년에는 최장의 장마가 관측되었으며, 전국적으로 홍수로 인한 침수피해가 발생하였다. 홍수에 선제적으로 대응하기 위해서 신뢰성 있는 홍수예·경보가 필요하며, 이를 위해서는 신속하고 정확성있는 강우예측이 선행되어야 한다. 이에 본 연구에서는 초단기 강우예측을 목적으로 둔 레이더 기반의 강우앙상블 예측모형을 개발하였다. 라그랑지안 지속성(Lagrangian persistence)을 기반으로 개발하였으며, 강우장의 이동 패턴은 이류특성을 활용해 추정하였다. 즉, 강우장의 예측정확도를 향상시키기 위해 공간적 규모별 캐스캐이드(cascade) 방법으로 분리해 이동 경로를 추정하였다. 예측시간에 따른 강우량은 각 캐스캐이드에 자기회귀모형을 적용하였다. 레이더 강우량은 2016-2020년 사이에 발생한 강우사상에 대한 환경부 홍수통제소에서 제공한 레이더 합성장을 이용하였다. 예측강우량에 대한 평가는 RMSE, Pearson's Correlation, FSS 등 통계치를 통해 수행하였다. 본 연구에서 소개된 강우예측 모형은 초단기 홍수예측에 정확도 높은 강우 정보를 제공할 수 있으며, 이에 따라 홍수피해를 저감하는데 도움이 될 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.