• Title/Summary/Keyword: 예측강수량

Search Result 581, Processing Time 0.031 seconds

Climate Change Effect on Daily Precipitation Frequency in Korea (기후변화가 한반도 일 강수량의 빈도에 미치는 영향)

  • Kyoung, Min-Soo;Kim, Hung-Soo;Kim, Byung-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.129-133
    • /
    • 2009
  • 현재 전 세계는 기후변화로 인하여 발생하는 재해로부터 자국민을 보호하고자 다양한 노력을 기울이고 있다. 특히, 기후변화로 인한 극한홍수에 대비하기 위한 다양한 정책이나 대응시스템을 구축하고자 상당한 예산과 인력을 투자하고 있는 실정이다. 국내의 경우도 기후변화로 인하여 극한홍수가 점차 증가할 것이라는 예상과 함께 기후변화로 인한 극한홍수를 예측하고 평가하기 위한 다양한 노력들이 진행 중이다. 이에 본 연구에서는 극한 홍수를 예측하는데 필요한 일 강수량을 발생시키기 위하여 월 단위로 제공되는 Global Climate Model (GCM)으로부터 지상 관측소지점으로 축소된 월 총강수량을 기반으로 일 강수를 모의할 수 있는 강수발생모형을 제시하고자 한다. 또한 강수발생모형으로부터 재현된 일 강수량의 연 최대치 시계열을 대상으로 매개변수적 빈도해석을 진행함으로써 기후변화가 한반도 일 강수량에 미치는 영향을 평가하였다. 기상청산하 서울지점을 대상으로 연구를 진행하였으며, 분석결과 기후변화를 고려할 경우 미래 서울지역의 일 강수량이 다소 증가하는 것을 확인하였다.

  • PDF

Precipitation forecasting by fuzzy Theory : I - Applications of Neuro-fuzzy System and Markov Chain (퍼지론에 의한 강수예측 : I. 뉴로-퍼지 시스템과 마코프 연쇄의 적용)

  • Na, Chang-Jin;Kim, Hung-Soo;Kim, Joong-Hoon;Kang, In-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.619-629
    • /
    • 2002
  • Water in the atmosphere is circulated by reciprocal action of various factors in the climate system. Otherwise, any climate phenomenon could not occur of itself. Thus, we have tried to understand the climate change by analysis of the factors. In this study, the fuzzy theory which is useful to express inaccurate and approximate nature in the real world is used for forecasting precipitation influenced by the factors. Forecasting models used in this study are neuro-fuzzy system and a Markov chain and those are applied to precipitation forecasting of illinois. Various atmosphere circulation factors(like soil moisture and temperature) influencing the climate change are considered to forecast precipitation. As a forecasting result, it can be found that the considerations of the factors are helpful to increase the forecastibility of the models and the neuro-fuzzy system gives us relatively more accurate forecasts.

Tropical cyclone activities and extreme rainfall change detection (태풍활동과 극치강우의 변화탐지)

  • Kim, Jong-Suk;Yoon, Sun-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.81-81
    • /
    • 2022
  • 서북태평양은 전세계적으로 태풍이 가장 많이 발생하는 해양 지역 중 하나이다. 태풍이 몰고 온 강풍과 폭우, 폭풍해일 등은 우리 사회경제와 환태평양 국가의 신변안전에 심각한 위협이 되고 있다.특히 내륙으로 진입하는 수백킬로의 영향을 미치는 만큼 넓은 지역에 걸쳐 강우량이 발생하고, 집중강수 기간이 짧아 산사태 등 자연재해로 많은 인명피해가 발생한다. 이러한 피해를 줄이기 위해서는 태풍의 활동특성을 잘 파악하고 태풍에 의한 강수량 예측 연구가 재해예방과 재난저감을 위해 필요하다. 그러나 현재기술에서 태풍이 몰고 온 강수의 정확한 양적 예측은 여전히 어려운 문제이며, 해결해야 할 큰 도전과제이다. 본 연구에서는 태풍별 강수량 상관관계를 분석하고, 서북태평양의 역사적 태풍의 궤도와 강도를 고려해 태풍으로 인한 강수량을 예측하는 통계적 방법을 적용한 결과를 제시하고자 한다.

  • PDF

Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management (효율적인 수자원관리를 위한 범주형 확률장기예보의 예측력 평가 및 정량화)

  • Son, Chanyoung;Jeong, Yerim;Han, Soohee;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.563-577
    • /
    • 2017
  • As the uncertainty of precipitation increases due to climate change, seasonal forecasting and the use of weather forecasts become essential for efficient water resources management. In this study, the categorical probabilistic long-term forecasts implemented by KMA (Korea Meteorological Administration) since June 2014 was evaluated using assessment indicators of Hit Rate, Reliability Diagram, and Relative Operating Curve (ROC) and a technique for obtaining quantitative precipitation estimates based on probabilistic forecasts was proposed. The probabilistic long-term forecasts showed its maximum predictability of 48% and the quantified precipitation estimates were closely matched with actual observations; maximum correlation coefficient (R) in predictability evaluation for 100% accurate and actual weather forecasts were 0.98 and 0.71, respectively. A precipitation quantification approach utilizing probabilistic forecasts proposed in this study is expected to enable water management considering the uncertainty of precipitation. This method is also expected to be a useful tool for supporting decision-making in the long-term planning for water resources management and reservoir operations.

Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information (기상인자와 비정상성 빈도해석 모형을 이용한 낙동강유역의 계절강수량 전망)

  • Kwon, Hyun-Han;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.339-350
    • /
    • 2011
  • This study developed a climate informed Bayesian nonstationary frequency model which allows us to forecast seasonal summer rainfall at Nakdong River. We constructed a 37-year summer rainfall data set from 10 weather stations within Nakdong river basin, and two climate indices from sea surface temperature (SST) and outgoing longwave radiation (OLR) were derived through correlation analysis. The selected SST and OLR have been widely acknowledged as a climate driver for summer rainfall. The developed model was applied first to the 2010-year summer rainfall (888.1 mm) in order to assure ourself. We demonstrated model performance by comparing posterior distributions. It was confirmed that the proposed model is able to produce a reasonable forecast. The forecasted value is about 858.2 mm, and the difference between forecast and observation is about 30 mm. As the second case study, 2011-year summer rainfall forecast was made using an observed winter SSTs and an assumed 50% value of OLRs. The forecasted value is 967.7 mm and associated exceedance probability over average summer rainfall 680 mm is 92.9%. In addition, 50-year return period for summer rainfall was projected through the nonstationary frequency model. An exceedance probability over 1,400 mm corresponding to the 50-year return level is about 73.7%.

Program Development for Provide Future Estimated Precipitation in the Youngjong Island (인천 영종도 지역의 장래 예측 강수제공 프로그램 개발)

  • Jang, Dong Woo;Park, Hyo Seon;Choi, Jin Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.21-21
    • /
    • 2016
  • 인천 영종도는 물부족 위험평가 분석을 위해 Smart Water Grid연구단에서 선정한 데모플랜트로섬으로 고립된 지역이다. 영종도는 공촌정수장으로부터 상수도를 공급받고 있으며 관로 파손 등의 사고가 발생할 경우 외부 수자원으로부터 수도를 공급 받기 어려운 실정이다. 따라서 상수도 공급의 어려움이 발생할 경우 대체 수자원을 활용한 가용수량 산정과 이를 적용하기 위한 물수급평가 프로그램이 영종도에 적용 될 예정이다. 본 연구에서는 물수급평가를 위해 수문분석의 기초자료인 장래 예측 강수량을 제공하는 프로그램을 개발하였다. 장래 강수예측자료는 기상청 기상예보와 기후변화시나리오를 활용하였으며 Visual Studio2013을 통해 강수제공 프로그램을 개발하였고, 데이터의 저장과 DB서버 연동을 위해 Oracle 프로그램이 이용되었다. 기상청에서는 3일, 10일, 1달, 3달로 기간을 구분하여 강수확률 예보를 제공하고 있기 때문에 3개월 이내의 중 단기 예측은 기상청에서 제공되는 기상확률예보를 사용하였고, 3개월 이후의 장기 예측은 RCP 8.5시나리오에 의한 일단위 강수량이 활용될 수 있도록 하였다. 기상청 확률예보의 경우 퍼센트 확률을 정량적 수치로 환산하여 일단위 강수량으로 변환하여 제공하였다. 연구를 통해 개발된 강수제공 프로그램에서는 영종도 지역 내 행정구역 별 면적평균강수량이 제공되며, 기후변화시나리오에 의한 강수데이터 취득 시 고해상도(1km 격자단위)로 추출이 가능하도록 하였다. 사용자는 위 경도 좌표에 따라 일 및 월 단위의 강수데이터를 텍스트 파일 형태로 취득할 수 있고, 프로그램 화면 내 표출되는 그래프를 통해 현재대비 장래 강수량 변화를 확인할 수 있도록 하였다. 향후 Smart Water Grid 연구성과로 개발된 물부족위험평가프로그램과 연동하여 물수급평가, 가용수량 산정 등에 활용될 수 있을 것으로 기대된다.

  • PDF

Forecasting Prices of Major Agricultural Products by Temperature and Precipitation (기온과 강수량에 따른 주요 농산물 가격 예측)

  • Kun-Hee Han;Won-Shik Na
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • In this paper, we analyzed the impact of temperature and precipitation on agricultural product prices and predicted the prices of major agricultural products using TensorFlow. As a result of the analysis, the rise in temperature and precipitation had a significant effect on the rise in prices of cabbage, radish, green onion, lettuce, and onion. In particular, prices rose sharply when temperature and precipitation increased simultaneously. The prediction model was useful in predicting agricultural product price changes due to climate change. Through this, agricultural producers and consumers can prepare for climate change and prepare response strategies to price fluctuations. The paper can contribute to understanding the impact of climate change on agricultural product prices and exploring ways to increase the stability and sustainability of agricultural product markets. In addition, it provides important data to increase agricultural sustainability and ensure economic stability in the era of climate change. The research results will also provide useful insights to policy makers and can contribute to establishing effective agricultural policies in response to climate change.

가을장마와 태풍

  • 허창회
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.87-90
    • /
    • 2003
  • 한반도의 강수는 여름철 강수량이 연 강수량의 50% 이상이며, 여름 강수량의 상당 부분이 장마기간에 집중되어 내리는 특성을 갖고 있다 (Ho and Kang, 1988). 장마기간의 강수는 산악 등 지형의 영향을 받아서 어느 지역에 집중되어 내리며, 그 지역에 커다란 인명 및 재산상의 피해를 끼친다. 이러한 집중호우로 의한 피해는 국가의 경제와 산업이 발달할수록 증가하고 있다. 그러나 아직까지도 장마기간동안 시간과 공간적으로 다양하게 변화하는 강수발생의 이해와, 나아가 집중호우의 예측에 대한 연구는 어려운 과제로 남아 있다. (중략)

  • PDF

A Study on data pre-processing for rainfall estimation from CCTV videos (CCTV 영상 기반 강수량 산정을 위한 데이터 전처리 방안 연구)

  • Byun, Jongyun;Jun, Changhyun;Lee, Jinwook;Kim, Hyeonjun;Cha, Hoyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.167-167
    • /
    • 2022
  • 최근 빅데이터에 관련된 연구에 있어 데이터의 품질관리에 대한 논의가 꾸준히 이뤄져 오고 있다. 특히 이미지 처리 및 분석에 활용되어온 딥러닝 기술의 경우, 분류 작업 및 패턴인식 등으로부터 데이터의 특징을 추출함으로써 비지도학습(Unsupervised Learning)을 가능하게 한다는 장점이 있음에도 불구하고 빅데이터를 다루는 과정에 있어 용량, 다양성, 속도 및 신뢰성 측면에서의 한계가 있었다. 본 연구에서는 CCTV 영상을 활용한 강수량 산정 모델 개발에 있어 예측 정확도 향상 및 성능 개선을 도모할 수 있는 데이터 전처리 방법을 제안하였다. 서울 근린 AWS 4개소 지역(김포장기, 하남덕풍, 강동, 성남) 및 중앙대학교 지점 내 CCTV를 설치한 후, 최대 9개월의 영상을 확보하여 강수량 산정을 위한 딥러닝 모델을 개발하였다. 배경분리, 조도조정, 영역설정, 데이터증진, 이상데이터 분류 등이 가능한 알고리즘을 개발함으로써 데이터셋 자체에 대한 전처리 작업을 수행한 후, 이에 대한 결과를 기존 관측자료와 비교·분석하였다. 본 연구에서 제안한 전처리 방법들을 적용한 결과, 강수량 산정 모델의 예측 정확도를 평가하는 지표로 선정한 평균 제곱근 편차(Root Mean Square Error; RMSE)가 약 30% 감소함을 확인하였다. 본 연구의 결과로부터 CCTV 영상 데이터를 활용한 강수량 산정의 가능성을 확인할 수 있었으며 특히, 딥러닝 모델 개발시 필요한 적정 전처리 방법들에 대한 기준을 제시할 수 있을 것으로 판단된다.

  • PDF

Estimation of Quantitative Daily Precipitation Forecasting for Integrated Real-time Basin Water Management System (실시간 물관리를 위한 정량적 강수예측기법에 관한 연구)

  • Oh, Jai-Ho;Kim, Jin-Young;Kang, Bu-Sick;Jeong, Chang-Sam;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1488-1491
    • /
    • 2006
  • 본 연구에서는 실시간 통합 물관리 시스템의 일환으로 월별 일강수량 예측 시스템에 관한 연구를 실시하였다. 선행시간 2일 예측에 대해서는 기상청 생성 수치모의 RDAPS (Regional Data Assimilation and Prediction System)를 기반으로 강수진단모형인 QPM (Quantitative Precipitatiom Model)을 이용하여 지형효과를 보정하였으며, 선행시간 2일에서 8일까지의 예측에 대해서는 GDAPS (Global Data Assimilation and Prediction System) 모의결과를 QPM을 이용하여 보정하였고, 선행시간 10일 이후의 예측값은 통계적 기법을 이용한 자료를 활용하였다. 통계적 기법으로는 과거 20년간의 관측된 강수경향을 이용하여 시스템을 구축하였다. 강수진단모형 (QPM)은 Misumi et al. (2001), Bell (1978), Collier (1975)등이 제안한 바 있는 Collier-type의 모형으로서 이들 모형은 소규모 지형 효과를 고려한 강수량을 산출하는 진단 모형이다. QPM은 중규모 예측 모형으로부터 계산된 수평 바람, 고도, 기온, 강우 강도, 그리고 상대습도 등의 예측 자료를 이용하고, 중규모 예측 모형에서는 잘 표현되지 않는 소규모 지형 효과를 고려함으로써 중규모 예측 모형에서 생산된 상대적으로 성긴 격자의 강수량 예측 값을 상세 지역의 지형을 고려한 강수량 예측 값으로 재구성하게 된다. QPM은 중규모 모형으로부터 나온 자료를 초기 자료로 이용하고 3 km 간격의 상세 지형을 반영하는 모형으로 소규모 지형 효과를 표현함으로써 상세 지역에서의 강수량 산출과 지형에 따른 강수량의 분포 파악이 용이할 뿐 아니라, 계산 효율성을 개선시킬 수 있다.착능이 높은 것으로 사료되었다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주

  • PDF