In this paper, a predictive maintenance of the robot trouble using the machine learning method, so called MT(Mahalanobis Taguchi), was studied. Especially, 'MD(Mahalanobis Distance)' was used to compare the robot arm motion difference between before the maintenance(bearing change) and after the maintenance. 6-axies vibration sensor was used to detect the vibration sensing during the motion of the robot arm. The results of the comparison, MD value of the arm motions of the after the maintenance(bearing change) was much lower and stable compared to MD value of the arm motions of the before the maintenance. MD value well distinguished the fine difference of the arm vibration of the robot. The superior performance of the MT method applied to the prediction of the robot trouble was verified by this experiments.
현재 많은 제조 업체들이 장비를 운영하는 중에 장비의 수명이나 이상으로 인한 고장으로 전체 작업 공정이 중단되어 큰 손실은 입은 많은 사례를 가지고 있다. 본 논문에서는 이러한 피해를 조금이나마 줄여 보고자 장비의 상태를 모니터링 및 분석하여 장비의 교체 시기 및 고장 의심 부분을 사용자에게 미리 알려주는 분석 툴을 설계한다. 실제 장비의 적용 대상은 현대중공업 LNG 선박 제조의 크레인 전동기를 대상으로 하였다. 특히, 크레인에서 가장 중요하다고 할 수 있는 전동기의 진동 데이터를 파형(Wavelet)화 하고, 이것을 FFT(Fast Fourier Transform) 변환하여 이 두 형태를 분석해서 전동기의 이상 징후를 발견하는데 초점을 맞추었다. 향후 이러한 적용 사례를 활용하게 되면, 고가 장비의 갑작스러운 고장으로 인한 제조업체의 손실을 조금이라도 줄일 수 있을 것으로 본다.
The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.
발전소에서 운전중인 기계들의 안전운전과 예지 보전을 위하여 발전설비의 고장 감지 및 진단과 상태 모니터링은 중대한 역할을 담당하고 있다. 이 연구에서는 설비의 안전하고 신뢰적인 운전을 위한 기계의 작동상태를 사운드 정보로 획득하고 분석하는 시스템을 제안하였다. 사운드 정보의 사용은 적은 양의 채널의 사용으로 많은 기계 및 설비의 이상 유무의 판별을 가능케 하며, 이를 획득하기 위하여 3개의 마이크로폰, 다채널 A/D변환기, 다채널 I/O Sound Card(Soundtrack DSP24) 및 PC로 시스템을 구성하였다. 소프트웨어 개발언어로서 Microsoft Visual C++ 및 MATLAB을 이용하였다. 화력 발전소에 운전중인 주요기계들의 사운드 정보를 취득하여 취득한 기계별 사운드 정보를 이용하여 주파수 특성을 파악하고, 이를 이용하여 기기의 운전 상태진단을 가능하게 한다.
반도체 공정은 주로 진공 중에서 이루어 지며 진공을 잘 유지하는 것이 매우 중요하고 여러 가지 종류의 펌프가 사용이 된다. 저진공펌프로 많이 사용되는 로타리 펌프에 대해서 진동 및 온도센서를 부착하고 펌프의 상태에 따른 진동의 변화 및 온도의 변화를 연구 하고 펌프의 예지 보전에 활용할 수 있도록 하였다.
본 연구에서 우리는 PHM 기반 공조설비의 연쇄 고장 패턴을 학습하여 미세먼지의 상태를 조절할 수 있는 알고리즘을 설계하였다. 공조설비의 고장으로 인한 공조설비 가동중단과 이로 인한 미세먼지의 확산은 불가피하다. 우리가 개발한 알고리즘은 PHM을 통한 미세먼지 관리 체계를 수립하는 것으로써 공조기 정지/가동 패턴학습을 통하여 일정하게 안정화 상태를 유지하고 이를 기반으로 미세먼지를 관리하는 알고리즘이다. 알고리즘의 성능을 평가하기 위해 지하철 역 내에서 시뮬레이션 한 결과, 미세먼지의 농도가 평균 30% 감소하는 것을 알 수 있었다. 지하철 이용 승객이 많은 역의 경우 미세먼지 농도가 환경부 기준(100㎍/m3)을 초과하였지만, 시뮬레이션을 실시한 모든 역에서 미세먼지 농도가 개선되었음을 알 수 있었다. 향후 연구로는 지하철 역사 내의 미세먼지 뿐만아니라 CO2, CO, NO2 등 오염물질을 종합적으로 관리할 수 있도록 시스템을 확장하는 것이다.
섬유, 자동차와 같은 여러 제조 공정에서 설비가 고장이 나 멈추게 되면 기계가 작동하지 않게 되고 이는 기업의 시간적, 금전적 손실로 이어진다. 따라서 설비의 고장이 발생하기 전, 고장을 예측하여 정비할 수 있도록 설비의 이상을 사전에 탐지하는 것이 중요하다. 대부분의 설비 고장 원인은 설비의 필수 부품인 베어링의 고장으로, 베어링의 고장을 진단하는 것은 설비예지보전 연구의 핵심이기도 하다. 본 논문에서는 베어링의 진동 신호를 분석하여 SWT-SVD 전처리 알고리즘을 제안하고 이를 시계열 이상탐지 모델 네트워크 중 하나인 어노멀리 트랜스포머에 적용하여 베어링 이상탐지 모델을 구현한다. 제조공정의 베어링 진동신호는 실시간으로 센서값들의 이력이 작성되어 노이즈가 존재하므로, 이를 줄이기 위해 본 연구에서는 정상 웨이블릿 변환(Stationary Wavelet Transform)을 사용하여 주파수 성분을 추출하고, 특이값 분해(Singular Value Decomposition) 알고리즘을 통해 유의미한 특징들을 추출하는 전처리를 진행한다. 제안하는 SWT-SVD 전처리 방법을 적용한 베어링 이상탐지 모델 실험을 위해 IEEE PHM학회에서 제공하는 PHM-2012-Challenge 데이터 세트를 활용하였으며, 실험 결과는 0.98의 정확도와 0.97의 F1-Score로 우수한 성능을 보였다. 추가로, 성능 향상을 입증하기 위해 선행 연구들과 성능 비교를 진행한다. 비교 실험을 통해 제안한 전처리 방법이 기존의 전처리보다 높은 성능을 보임을 확인하였다.
최근 정보통신기술의 발전에 따라 사물인터넷 기술이 비약적으로 발전하고 있다. IoT 기술은 다양한 센서들을 활용하여 각 센서의 고유한 데이터를 발생시켜 시스템 상태의 진단을 가능하도록 한다. 하지만, 현재 적용되고 있는 장비운용 시스템은 장비에 문제가 발생한 후 관리자가 해당 문제를 처리해야하는 사후보전 방식의 개념이며, 이는 시스템의 에러로 인한 시스템의 신뢰성 및 가용성 문제점을 의미할 수 있으며, 정비를 위한 시스템 중단으로 생산성에 부정적 영향으로 인한 경제적 손실을 초래할 수 있다. 따라서, 본 연구에서는 지능형 IoT(AIoT) 기술을 적용하여 공장 내 정류기를 보다 효율적으로 운용하기 위한 엣지 컨트롤러 제어 의사 결정 알고리즘과, 정류기 부품별 고장 상황 정보에 대한 도메인 지식 기반의 모델링을 작성하여, 이를 바탕으로 수집된 각 센서 데이터에 대한 상관관계 분석을 통해 시나리오별 Abnormal 데이터에 대하여 적정 수준의 상태 메시지를 출력함을 확인할 수 있었으며, 이를 통한 기존 현장의 장비 운용 시스템의 가용성과 생산성이 향상됨을 확인하였다.
LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.
운전 중인 기계들의 안전 운전과 예지 보전을 위한 설비의 고장 감지 및 진단과 상태감시는 산업 현장에서 중요한 역할을 담당하고 있다. 이러한 설비의 많은 기기들은 회전기기로 이루어져 있으며 회전기기의 고장진단은 오랜 기간 많은 분야에서 연구되고 있다. 본 연구에서는 회전기기의 고장신호는 주파수 영역의 신호의 변화로 나타난다는 특징을 이용하여 보다 효율적인 주파수 영역에서의 신호 해석을 위하여 Linear Predictive Coding(LPC) 계수를 이용하였다. 사용된 데이터는 회전기기의 고장 신호의 습득을 용이하게 하기 위하여 유도전동기에 인위적인 고장재현을 통하여 습득된 진동 신호를 사용하였다. 제안된 시스템은 LPC 분석을 사용하여 일반적으로 사용되는 주파수 영역 상에서의 다른 해석 방법들보다 빠른 시간에 연산 결과를 도출할 수 있는 장점을 가질 수 있었으며, 성공적인 실험 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.