• Title/Summary/Keyword: 예보모델

Search Result 334, Processing Time 0.026 seconds

Dual-mode diagnosis system for water quality and corrosion in pipe using convolutional neural networks (CNN) and ultrasound (합성곱 신경망과 초음파 기반 상수도관 수질 및 부식 분석용 이중모드 진단 시스템)

  • So Yeon Moon;Hyeon-Ju Jeon;Yeongho Sung;Min-Seo Kim;Daehun Kim;Jaeyeop Choi;Junghwan Oh;O-Joun Lee;Hae Gyun Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.685-686
    • /
    • 2023
  • 상수도관의 수질 및 부식도 검사에는 파이프에 손상을 입히지 않고 지속적인 방법이 필요하다. 초음파는 이를 만족하면서 상태를 확인할 수 있고 주파수가 높을수록 해상도가 좋아져 정밀한 측정이 가능하다는 장점이 있다. 이러한 특성을 이용해 상수도관 모니터링 시스템으로 초음파 기반의 Scanning Acoustic Microscopy(SAM)과 Convolutional Neural Network(CNN)을 사용하는 새로운 방법을 제안한다. 기존의 Non-Destructive Testing(NDT)방식의 단점을 보완하면서 더 높은 해상도로 상수도관을 점검하는 방식으로, SAM 을 이용하여 부식으로 인한 파이프 두께 변화와 부유물의 여부 및 수질을 동시에 감지하고 얻은 데이터를 CNN 으로 분석했다. CNN 의 높은 정확도 결과로 이 시스템의 파이프 부식도 및 수질 모니터링에 대한 적합성을 보여주었다.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 2. Seasonal Optimization and Case Studies (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 2. 계절별 최적화 및 사례 분석)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.531-548
    • /
    • 2023
  • We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Analysis of Stability Indexes for Lightning by Using Upper Air Observation Data over South Korea (남한에서 낙뢰발생시 근접 고층기상관측 자료를 이용한 안정도 지수 분석)

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.467-482
    • /
    • 2010
  • In this study, characteristics of various stability indexes (SI) and environmental parameters (EP) for the lightning are analysed by using 5 upper air observatories (Osan, Gwangju, Jeju, Pohang, and Baengnyeongdo) for the years 2002-2006 over South Korea. The analysed SI and EP are the lifted index, K-index, Showalter stability index, total precipitable water, mixing ratio, wind shear and temperature of lifting condensation level. The lightning data occurred on the range of -2 hr~+1 hr and within 100 km based on the launch time of rawinsonde and observing location are selected. In general, summer averaged temperature and mixing ratio of lower troposphere for the lightning cases are higher about 1 K and $1{\sim}2gkg^{-1}$ than no lightning cases, respectively. The Box-Whisker plot shows that the range of various SI and EP values for lightning and no lightning cases are well separated but overlapping of SI and EP values between lightning and no lightning are not a little. The optimized threshold values for the detection of lightning are determined objectively based on the highest Heidke skill socre (HSS), which is the most favorable validation parameter for the rare event, such as lightning, by using the simulation of SI and EP threshold values. Although the HSS is not high (0.15~0.30) and the number and values of selected SI and EP are dependent on geographic location, the new threshold values can be used as a supplementary tool for the detection or forecast of lightning over South Korea.

The Generation of Westerly Waves by Sobaek Mountains (소백산맥에 의한 서풍 파동 발생)

  • Kim, Jin wook;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.24-34
    • /
    • 2017
  • The westerly waves generation is described in the advanced earth science textbook used at high school as follows: as westerly wind approaches and blows over large mountains, the air flow shows wave motions in downwind side, which can be explained by the conservation of potential vorticity. However, there has been no case study showing the phenomena of the mesoscale westerly waves with observational data in the area of small mountains in Korea. And thus the wind speed and time persistency of westerly winds along with the width and length of mountains have never been studied to explain the generation of the westerly waves. As a first step, we assured the westerly waves generated in the downwind side of Sobaek mountains based on surface station wind data nearby. Furthermore, the critical or minimum wind velocity of the westerly wind over Sobaek mountains to generate the downwind wave were derived and calcuated tobe about $0.6m\;s^{-1}$ for Sobaek mountains, which means that the westerly waves could be generated in most cases of westerly blowing over the mountains. Using surface station data and 4-dimensional assimilation data of RDAPS (Regional Data Assimilation and Prediction System) provided by Korea Meteorological Agency, we also analyzed cases of westerly waves occurrence and life cycle in the downwind side of Sobaek mountains for a year of 2014. The westerly waves occurred in meso-${\beta}$ or -${\gamma}$ scales. The westerly waves generated by the mountains disappeared gradually with wind speed decreasing. The occurrence frequency of the vorticity with meso-${\beta}$ scale got to be higher when the stronger westerly wind blew. When we extended the spatial range of the analysis, phenomena of westerly waves were also observed in the downwind side of Yensan mountains in Northeastern China. Our current work will be a study material to help students understand the atmospheric phenomena perturbed by mountains.

Seasonal Variation of Surface heat budget and Wind Stress Over the Seas Around the Korean Peninsula (한반도주위 해양에서 의 해면 열수지와 응력의 계절변화)

  • 강인식;김맹기
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.325-337
    • /
    • 1994
  • The distributions of heat and momentum fluxes on the surface over the oceans around the Korean Peninsula are obtained based on the surface-layer flux model of Kim and Kang (1994), and their seasonal variations are examined in the present study. the input data of the model is the oceanatmosphere data with a grid interval of 2$^{\circ}$ in longitude and latitude. The atmosphere data, which are the pressure, temperature, and specific humidity on the 1000 mb level for 3 year period of 1985∼1987, are obtained from the European center for Medium Range Forecast. The sea surface temperature (SST) is obtained from National Meteorological Center (NMC). The solar insolation and longwave radiation on the ocean surface are obtained, respectively, from the NASA satellite data and based on an emprical formula. It is shown from the net heat flux that the oceans near Korea lose heat to the atmosphere in January and October with the rates of 200∼ 400 Wm/SUP -2/ and 100 Wm/SUP -2/, respectively. But the oceans are heated by the atmosphere in April and July with about the same rate of 100 Wm/SUP -2/. The annualmean net heat flux is negative over the entire domain except the northern part of the Yellow Sea. The largest annual-mean cooling rate of about 120 Wm/SUP -2/ is appeared off the southwest of Japan. In the East Sea, the annual-mean cooling rate is 60∼90 Wm/SUP -2/ in the southern and northern parts and about 30 Wm/SUP -2/ in the middle part. The magnitude of wind stress in january is 3∼ 5 times bigger than those of the other months. As a result, the spatial pattern of annual-mean wind stress is similar to that of January. It is also shown that the annual-mean wind stress curl is negative. in the East China Sea and the South Sea,but it is positive in the northern part of the Yellow Sea.In the East sea,the stress curl is positive in the southeast and northern parts and negative in the northwestern part.

  • PDF

A Study of Prediction of Daily Water Supply Usion ANFIS (ANFIS를 이용한 상수도 1일 급수량 예측에 관한 연구)

  • Rhee, Kyoung-Hoon;Moon, Byoung-Seok;Kang, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.821-832
    • /
    • 1998
  • This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

  • PDF

유비쿼터스 컴퓨팅 황경에서 발생하는 에이전트간 충돌 해결 모델

  • 이건수;김민구
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.249-258
    • /
    • 2004
  • 오늘날 활발하게 이루어지고 있는 유비쿼터스 컴퓨팅 관련 기술 연구는 사용자가 시간과 장소에 구애받지 않고 네트워크에 접근해 다양한 컴퓨터 관련 서비스를 제공 받을 수 있는 방법에 초점을 맞추고 있다. 이 처럼 시간과 공간의 한계를 뛰어 넘은 네트워크로의 자유로운 접근은 일상 생활의 패러다임을 바꾸어 놓게 될 것이다. 유비쿼터스 컴퓨팅 기술을 통해 가장 큰 변화가 일어나는 분야는 일반 가정환경에서 일어나는 인텔리전트 홈 네트워크 (Intelligent Home Network) 라고 할 수 있다. 집에 들어오면, 자동으로 문을 열어주고, 불을 켜주며, 놓쳤던 TV 프로그램을 자동으로 녹화해 놓았다가 원하는 시간에 보여주고, 적당한 시간에 목욕물을 미리 받아준다. 또한 집밖으로 나가기 전, 일기예보에 따라 우산을 챙겨주고, 일정을 확인시켜주며 입고 나갈 옷을 골라줄 수도 있다. 이 모든 일들이 유비쿼터스 컴퓨팅 기술이 가져올 인텔리전트 홈 네트워크의 모습이다. 그러나, 모든 사용자에게 효과적인 서비스를 제공하기 위해서는 홈 네트워크 상의 자원 관리에서 일어날 수 있는 에이전트들간의 자원 접근 권한 충돌을 효율적으로 방지할 수 있는 기술이 필요하다. 유비쿼터스 컴퓨팅 환경에서 자원관리 특성은 점유의 연속성, 자원 사이의 연관성, 그리고 자원과 사용자 사 사이의 연계성의 3 가지 특성을 지니고 있다. 본 논문에서는 유비쿼터스 컴퓨팅 환경에서 일어날 수 있는 자원 충돌 상황을 효율적으로 처리하기 위한 자원 협상 방법을 제안한다. 본 방법은 자원 관리 특성을 바탕으로 시간논리에 기반을 둔 자원 선점과 분배 규칙으로 구성된다.트 시스템은 b-Cart를 기반으로 할 것으로 예측할 수 있다.타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data b

  • PDF

Development and evaluation of ANFIS-based conditional dam inflow prediction method using flow regime (ANFIS 기반의 유황별 조건부 댐 유입량 예측기법 개발 및 평가)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.607-616
    • /
    • 2018
  • Flow regime-based ANFIS Dam Inflow Prediction (FADIP) model is developed and compared with ANFIS Dam Inflow Prediction (ADIP) model in this study. The selected study area is the Chungju and Soyang multi-purpose dam watersheds in South Korea. The dam inflow, precipitation and monthly weather forecast information are used as input variables of the models. The training and validation periods of the models are 1987~2010 for Chungju and 1984~2010 for Soyang dam watershed. The testing periods for both watersheds are 2011~2016. The results of training and validation indicate that FADIP has better training ability than ADIP for predicting dam inflow in normal and low flow regimes. In the result of testing, ADIP shows low predictability of dam inflow in the low flow regime due to the model tuning on all flow regime together. However, FADIP demonstrates the improved accuracy over the entire period compared to ADIP, especially during the normal and low flow seasons. It is concluded that FADIP is valuable for the prediction of dam inflow in the case of drought years, and useful for water supply management of the multi-purpose dam.