• Title/Summary/Keyword: 영화 추천

Search Result 161, Processing Time 0.022 seconds

Improvement on Similarity Calculation in Collaborative Filtering Recommendation using Demographic Information (인구 통계 정보를 이용한 협업 여과 추천의 유사도 개선 기법)

  • 이용준;이세훈;왕창종
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.521-529
    • /
    • 2003
  • In this paper we present an improved method by using demographic information for overcoming the similarity miss-calculation from the sparsity problem in collaborative filtering recommendation systems. The similarity between a pair of users is only determined by the ratings given to co-rated items, so items that have not been rated by both users are ignored. To solve this problem, we add virtual neighbor's rating using demographic information of neighbors for improving prediction accuracy. It is one kind of extentions of traditional collaborative filtering methods using the peason correlation coefficient. We used the Grouplens movie rating data in experiment and we have compared the proposed method with the collaborative filtering methods by the mean absolute error and receive operating characteristic values. The results show that the proposed method is more efficient than the collaborative filtering methods using the pearson correlation coefficient about 9% in MAE and 13% in sensitivity of ROC.

A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size (이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법)

  • Choi, In-Bok;Lee, Jae-Dong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Collaborative filtering is a popular technique that recommends items based on the opinions of other people in recommender systems. Memory-based collaborative filtering which uses user database can be divided in user-based approaches and item-based approaches. User-based collaborative filtering predicts a user's preference of an item using the preferences of similar neighborhood, while item-based collaborative filtering predicts the preference of an item based on the similarity of items. This paper proposes a combined forecast scheme that predicts the preference of a user to an item by combining user-based prediction and item-based prediction using the ratio of the number of similar users and the number of similar items. Experimental results using MovieLens data set and the BookCrossing data set show that the proposed scheme improves the accuracy of prediction for movies and books compared with the user-based scheme and item-based scheme.

A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation (순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구)

  • Yoon, Ji Hyung;Chung, Jaewon;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.21-33
    • /
    • 2022
  • Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.

A Literature Review and Classification of Recommender Systems on Academic Journals (추천시스템관련 학술논문 분석 및 분류)

  • Park, Deuk-Hee;Kim, Hyea-Kyeong;Choi, Il-Young;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.139-152
    • /
    • 2011
  • Recommender systems have become an important research field since the emergence of the first paper on collaborative filtering in the mid-1990s. In general, recommender systems are defined as the supporting systems which help users to find information, products, or services (such as books, movies, music, digital products, web sites, and TV programs) by aggregating and analyzing suggestions from other users, which mean reviews from various authorities, and user attributes. However, as academic researches on recommender systems have increased significantly over the last ten years, more researches are required to be applicable in the real world situation. Because research field on recommender systems is still wide and less mature than other research fields. Accordingly, the existing articles on recommender systems need to be reviewed toward the next generation of recommender systems. However, it would be not easy to confine the recommender system researches to specific disciplines, considering the nature of the recommender system researches. So, we reviewed all articles on recommender systems from 37 journals which were published from 2001 to 2010. The 37 journals are selected from top 125 journals of the MIS Journal Rankings. Also, the literature search was based on the descriptors "Recommender system", "Recommendation system", "Personalization system", "Collaborative filtering" and "Contents filtering". The full text of each article was reviewed to eliminate the article that was not actually related to recommender systems. Many of articles were excluded because the articles such as Conference papers, master's and doctoral dissertations, textbook, unpublished working papers, non-English publication papers and news were unfit for our research. We classified articles by year of publication, journals, recommendation fields, and data mining techniques. The recommendation fields and data mining techniques of 187 articles are reviewed and classified into eight recommendation fields (book, document, image, movie, music, shopping, TV program, and others) and eight data mining techniques (association rule, clustering, decision tree, k-nearest neighbor, link analysis, neural network, regression, and other heuristic methods). The results represented in this paper have several significant implications. First, based on previous publication rates, the interest in the recommender system related research will grow significantly in the future. Second, 49 articles are related to movie recommendation whereas image and TV program recommendation are identified in only 6 articles. This result has been caused by the easy use of MovieLens data set. So, it is necessary to prepare data set of other fields. Third, recently social network analysis has been used in the various applications. However studies on recommender systems using social network analysis are deficient. Henceforth, we expect that new recommendation approaches using social network analysis will be developed in the recommender systems. So, it will be an interesting and further research area to evaluate the recommendation system researches using social method analysis. This result provides trend of recommender system researches by examining the published literature, and provides practitioners and researchers with insight and future direction on recommender systems. We hope that this research helps anyone who is interested in recommender systems research to gain insight for future research.

Using Genre Rating Information for Similarity Estimation in Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.93-100
    • /
    • 2019
  • Similarity computation is very crucial to performance of memory-based collaborative filtering systems. These systems make use of user ratings to recommend products to customers in online commercial sites. For better recommendation, most similar users to the active user need to be selected for their references. There have been numerous similarity measures developed in literature, most of which suffer from data sparsity or cold start problems. This paper intends to extract preference information as much as possible from user ratings to compute more reliable similarity even in a sparse data condition, as compared to previous similarity measures. We propose a new similarity measure which relies not only on user ratings but also on movie genre information provided by the dataset. Performance experiments of the proposed measure and previous relevant measures are conducted to investigate their performance. As a result, it is found that the proposed measure yields better or comparable achievements in terms of major performance metrics.

Fuzzy Clustering with Genre Preference for Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.99-106
    • /
    • 2020
  • The scalability problem inherent in collaborative filtering-based recommender systems has been an issue in related studies during past decades. Clustering is a well-known technique for handling this problem, but has not been actively studied due to its low performance. This paper adopts a clustering method to overcome the scalability problem, inherent drawback of collaborative filtering systems. Furthermore, in order to handle performance degradation caused by applying clustering into collaborative filtering, we take two strategies into account. First, we use fuzzy clustering and secondly, we propose and apply a similarity estimation method based on user preference for movie genres. The proposed method of this study is evaluated through experiments and compared with several previous relevant methods in terms of major performance metrics. Experimental results show that the proposed demonstrated superior performance in prediction and rank accuracies and comparable performance to the best method in our experiments in recommendation accuracy.

The Satisfaction Factors Affect the Recommendation Intention and Rewatching Intention of Watching Musicals through Online Platforms : Focus on the Moderating Effects of Audience's Degree of Involvement to Musicals (온라인 플랫폼 뮤지컬 관람 방식의 추천 의도 및 재관람 의도에 영향을 미치는 만족 요인 : 뮤지컬 관여도의 조절 효과를 중심으로)

  • Yoon, Hyeong-Yeol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.131-143
    • /
    • 2021
  • In this study, the factors influencing the satisfaction of the online platform musical viewing method were investigated, and the effect of the satisfaction factors on the recommendation intention and rewatching intention of the online platform viewing method for musicals was investigated. In addition, the effect of the survey subjects' degree of involvement to musicals between the satisfaction of the online platform-based musical viewing method and recommendation intention, and rewatching intention was investigated. Satisfaction factors of online platform musicals, which are independent variables, were classified into image quality, convenience, economy, and interactivity, and dependent variables were classified into recommendation intention and rewatching intention of online platform musicals, and moderator variable was set to degree of involvement to musicals, and a total of 20 hypotheses were established. An online survey was conducted on 1,454 audiences who had experience watching musicals through the online platform from August 28 to September 7, 2021, and a total of 1,418 answers were used as valid samples. As a result of the analysis, the factors that make up the satisfaction of online platform musicals appeared in the order of convenience, video quality, economics, and interactivity. It was found that the satisfaction level of watching online platform musicals had a positive effect on the intention to recommend and rewatching online platform musicals in the path of all satisfaction factors. It was found that the moderating effect of the audience's involvement in musicals between online platform musical viewing satisfaction and recommendation intention and rewatching intention had a significant effect only between image quality and recommendation intention. It shows that audiences with high involvement in musicals have intention to recommend only when they are satisfied with the video quality of online platform musicals. Particularly important point is that the convenience factor was found to have the greatest influence on the satisfaction of online platform musical viewing method, but the image quality factor was found to have the greatest influence on the recommendation intention and rewatching intention of online platform musicals.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

A Study on Discount & Capitalization Rates for Valuation of Culture Content Enterprises (문화(文化)콘텐츠기업(企業) 가치평가(價値評價)를 위한 할인율(割引率) 결정(決定)에 관한 연구(硏究) -비상장(非上場) 중소기업(中小企業)을 중심(中心)으로-)

  • Kim, In-Cheol;Ju, Hyeong-Geun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.179-213
    • /
    • 2005
  • 본 논문은 비상장 문화콘텐츠기업의 가치평가를 위한 할인율 결정에 있어, 한국문화콘텐츠진흥원의 $\ulcorner$CT프로젝트 투자가치 평가모형$\lrcorner$상 콘텐츠관련 항목별 평가 가중치를 비상장 중소기업에 적용하기에 적합한 것으로 미국에서 추천되고 있는 $\ulcorner$적산법1$\lrcorner$ 상의 리스크요인항목에 반영하고 수정함으로서, 문화콘텐츠사업의 특성이 감안될 수 있는 수정 모델을 제시하고자 하는 것이다. 이는 방송 및 영화용 애니메이션, 음반산업, 게임산업에 국한 된 것이나 실무상 적용이 용이하고 일반적으로 낮게 평가되는 가중평균자본비용을 보완할 수 있다는 장점이 있다.

  • PDF