• Title/Summary/Keyword: 영화텍스트

Search Result 177, Processing Time 0.022 seconds

Remediation of 3D Movie on < Priest > (<프리스트>를 통해 본 3D 영화의 재매개)

  • Chung, Il-Hyoung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.225-233
    • /
    • 2012
  • This study is focused on the relationship of old and new media with the concept of cultural interface. This study try to find out their similarities and differences of media contents and interface through contents analysis of text. As a results, there are competible coexistance of transparent immediacy and hypermediacy as a double logic of remediation. And the features of remediation that borrowing, aggressive, and absorb are showed cross each other. A related studies are focused on the narrative structure of story and on analysis of character, events, and background. And the other studies are focused on the policy of new media distribution. But, recent new media emphasizes the visualization of 3D technology and that strategy. Also they tries to convert a various media contents. Therefore, it is important to check and prepare those environmental changes of media. Then, more researches will be applied to remediation and cultural interface of this study. And I hope that they will be find an alternative strategy of contents and interface on media.

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

The Non-fiction Participants in the Reality Observational Entertainment Program as Social Actors: Focusing on Youn's Kitchen Season 2 (사회적 배우로서의 리얼리티 관찰 예능 프로그램의 일반인 참여자: <윤식당2>를 중심으로)

  • Ryu, Jae Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.274-289
    • /
    • 2019
  • The purpose of this study is to regard the non-fiction participants in the reality observational entertainment program as social actors. For this, the study has examined the concepts of social actor and performance, understood how the performances of social actors are projected onto the screen, and textually analyzed Youn's Kitchen season 2. As a result, the non-fiction participants(the guests) of Youn's Kitchen functioned as the social actors who performed the roles derived from their social relations under the consciousness of the camera. The more the number of social actors in the observational space increased, the more the number of their performing roles grew. Their everyday activities have been chosen by various filmic devices, such as the cameras, within the specific frame of hybrid performance mode that representational and presentational performances coexist.

The living space in the work of Marguerite Duras (마르그리트 뒤라스의 작품에 나타난 거주공간)

  • Kim, Eunne Kyung
    • Cross-Cultural Studies
    • /
    • v.49
    • /
    • pp.33-58
    • /
    • 2017
  • As a living space, house constitutes a good part of inhabitants' life, making the rhythm of life. This rhythm tends to be reflected into the house, establishing a sort of intercommunications between the house and its inhabitants. Becoming a living element, the house can endow the writer with literary resources. It is interrelated with its inhabitants. Thus, Duras' work preserves many invisible and fusional traces of links between her characters and the house. With her writing, the house displays important traces of life, with which a body of meaning is to be formed. It implies habits, imprints, links, and so on. Here, its projection into the imaginary also takes place for our writer. With this perspective in view, Duras is supposed to objectify her characters as physical and imaginary bodies. This introduces the passage from the real to the imaginary and vice versa. Unknown stories hidden behind the living places can come to manifest themselves through her writing.

Deep Learning-based Text Summarization Model for Explainable Personalized Movie Recommendation Service (설명 가능한 개인화 영화 추천 서비스를 위한 딥러닝 기반 텍스트 요약 모델)

  • Chen, Biyao;Kang, KyungMo;Kim, JaeKyeong
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.109-126
    • /
    • 2022
  • The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.

Case Study : Cinematography using Digital Human in Tiny Virtual Production (초소형 버추얼 프로덕션 환경에서 디지털 휴먼을 이용한 촬영 사례)

  • Jaeho Im;Minjung Jang;Sang Wook Chun;Subin Lee;Minsoo Park;Yujin Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we introduce a case study of cinematography using digital human in virtual production. This case study deals with the system overview of virtual production using LEDs and an efficient filming pipeline using digital human. Unlike virtual production using LEDs, which mainly project the background on LEDs, in this case, we use digital human as a virtual actor to film scenes communicating with a real actor. In addition, to film the dialogue scene between the real actor and the digital human using a real-time engine, we automatically generated speech animation of the digital human in advance by applying our Korean lip-sync technology based on audio and text. We verified this filming case by using a real-time engine to produce short drama content using real actor and digital human in an LED-based virtual production environment.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

Analysis of causal factors and physical reactions according to visually induced motion sickness (시각적으로 유발되는 어지럼증(VIMS)에 따른 신체적 반응 및 유발 요인 분석)

  • Lee, Chae-Won;Choi, Min-Kook;Kim, Kyu-Sung;Lee, Sang-Chul
    • Journal of the HCI Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • We present an experimental framework to analyze the physical reactions and causal factors of Visually Induced Motion Sickness (VIMS) using electroencephalography (EEG) signals and vital signs. We studied eleven subjects who are voluntarily participated in the experiments and conducted online and offline surveys. In order to simulate videos including global motions that could cause the motion sickness, we extracted global motions by optical flow estimation method from hand-held captured video recordings containing intense motions. Then, we applied the extracted global motions to our test videos with action movies and texts. Each genre of video includes three levels of different motions depending on its intensity. EEG signal and vital sign that were measured by a portable electrocorticography device and an electronic monometer in real time while the subjects watch the videos including ones with the extracted motions. We perform an analysis of the EEG signals using Distance Map(DM) calculated by correlation among each channel of brain signal. Analysis using the vital signs and the survey results is also performed to obtain relationship between the VIMS and causal factors. As a result, we clustered subjects into three groups based on the analysis of the physical reaction using the DM and the correlation between vital sign and survey results, which shows high relationships between the VIMS and the intensity of motions.