• 제목/요약/키워드: 영역 히스토그램

검색결과 586건 처리시간 0.029초

히스토그램에 기반한 영상의 캘리브레이션 알고리즘 (Image Calibration Algorithm Based on Histogram)

  • 구한서;전병문;정창성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.417-419
    • /
    • 1998
  • 캘리브레이션이란 회전요소, 이동요소, 크기요소 값을 이용하여 한 영상을 변형시킴으로서 두 영상간의 부분적으로 동일한 영역이 오버랩 되도록 하는 작업을 말한다. 본 논문에서는 두 영상의 캘리브레이션을 위한 하나의 방법으로서 히스토그램을 작성하고, 이를 토대로 설정된 임의의 그레이 레벨에 해당하는 화소들은 seed로 하여 영역확장을 수행한 후, 대응하는 영역사이에 매칭을 행함으로서 회전요소 값, 이동요소 값, 크기요소 값을 구한다. 또한 실험을 텅해 얻은 각 요소값과 실제값을 비교함으로서 본 알고리즘의 성능을 분석한다.

  • PDF

칼라-공간 히스토그램의 통계 정보를 이용한 자연 영상의 영역 분할 및 레이블링 기법 (Natural Image Segmentation and Labeling Technique by Color-Spatial Histogram and Statistics)

  • 신수연;김우생
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.154-159
    • /
    • 2002
  • 영역 분할과 영역 레이블링은 내용에 기반한 영상 검색이나 영상 이해를 위해 선행되어야 하는 중요한 작업중의 하나이다. 본 논문에서는 칼라-공간 히스토그램의 통계정보를 통해 자연 영상내의 영역을 효율적으로 분할하고 또한 이러한 데이터를 생성규칙으로 만들어 레이블링 하는 새로운 방법을 제안한다. 제안하는 방법은 자연영상처럼 많지 않은 영역으로 이루어진 경우 매우 효율적임을 보였다.

  • PDF

색상 조합 모델과 LM(Levenberg-Marquadt)알고리즘을 이용한 얼굴 영역 검출 (Face Region Detection using a Color Union Model and The Levenberg-Marquadt Algorithm)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.255-262
    • /
    • 2007
  • 본 연구는 칼라 이미지에서 인물의 얼굴 영역을 검출하는 개선된 색상 기반 방식을 제안한다. 제안 방법은 RGB, $YC_bC_r$, YIQ의 세 가지 색상 모델을 조합, 각각 휘도와 색도 성분 조합 히스토그램을 구축하고 구축된 색상 조합 히스토그램을 역전파방식의 신경망에 입력한 후 학습단계의 반본 과정에 Levenberg-Marquadt 알고리즘을 적용한다. 제안 방법은 신경망 학습과정에 Levenberg-Marquadt 알고리즘을 적용하여 얼굴 검출에 가장 많이 사용되는 방법 중 하나인 역전파 신경망이 지역 최소값에 봉착하는 문제점을 해결함으로써 검출 오류율을 낮추는데 기여한다. 또한 색상 조합 히스토그램을 사용한 새로운 색상 조합 기반의 얼굴 영역 검출 방법은 빛의 영향에 강건하도록 휘도 성분을 분리하고 색도 성분을 강조하여 단일 색상 히스토그램보다 신경망에 더 신뢰성 있는 값을 입력함으로써 단일 색상 공간을 사용했을 때보다 높은 얼굴 검출율을 보인다. 실험 결과는 제안 방식이 얼굴 영역 검출 개선에 효과적이며 빛의 변화에 강건함을 보여준다.

자궁경부암 세포 영상 분할을 위한 Thresholding 기법 (The thresholding method for cervical cell image segmentation)

  • 김재륜;하진영;김백섭;김호성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.419-421
    • /
    • 1999
  • 본 논문은 자궁경부암 검사를 위한 전처리 과정인 자궁경부암 세포 영상분할 문제 연구의 결과이다. 자궁경부암 세포 영상은 배경과 세포질 및 세포핵의 구별이 어렵다. 게다가 자궁경부암 검사 시스템은 짧은 시간동안 많은 영상을 처리해야 하기 때문에, 영상의 분석 속도가 빠르고 강력한 영상 분할 기법이 필요하다. 이를 위하여 우리는 thresholding 기법을 연구하였다. 먼저 세포 영상의 각 화소의 명암의 분포를 조사하여 히스토그램을 구하였다. 히스토그램은 0~255 사이에 존재하게 되는데, 0~255의 전 영역에 존재하기 보다는 그 중 일부분에만 존재한다. 우리는 히스토그램이 존재하는 영역을 백분율로 나누고 세포핵 및 세포질이 존재하는 영역의 분포를 구하여 global threshold를 찾았고, 이를 기준으로 각 점을 thresholding 할 때에 주위의 평균값을 보정값으로 두어 local thresholding을 수행하였다. 결과 영상은 핵의 영역을 탐색하기 위한 seed로 사용하기에 적합하다.

  • PDF

히스토그램과 확률을 이용한 차량 번호 검출 방법 (Vehicle number detection using histogram and probability)

  • 김효연;정도욱;최형일
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.307-308
    • /
    • 2015
  • 자동차 번호판의 문자를 검출하기 위한 과정 중 그림자가 있는 후면 번호판을 이진화하는 방법을 제안한다. 대부분의 경우 차량구조에 의한 그림자 발생이 문자를 검출하는데 오류를 발생시킨다. 이를 해결하기 위해 그림자 영역과 아닌 영역의 경계를 검출해야 한다. 하지만, 기존 방법은 히스토그램에서 세 개의 영역사이에 있는 임계값 2개를 수동으로 결정해야 되는 점과 현재번호판의 색상인 흰색 바탕에 검은 문자에 적용하면 문자 영역의 그림자 경계선 검출이 모호하다는 단점이 있다. 본 논문에서는 이 문제를 해결하기 위하여 슬라이딩 윈도우를 이용한 히스토그램과 탐색하는 픽셀의 좌, 우 픽셀들을 스캔하여 연결되지 않은 에지를 찾아 그림자 경계선 에지를 연결하는 방법을 제안한다.

  • PDF

다중 모델 색상 히스토그램 역투영을 이용한 물체 추적 기법 (The Object Tracking Method using Multi-model Color Histogram Back-projection)

  • 이정호;정동석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.849-852
    • /
    • 2000
  • 본 논문은 배경이 고정되지 않은 복잡한 동영상에서의 물체 추적을 위하여 다중 모델 색상 히스토그램 역투영(Multi Model Color Histogram Back-projection)방법을 제안한다. 색상 히스토그램 역투영(Color Histogram Back-projection)을 이용하면 카메라의 움직임 때문에 발생하는 배경의 변화에 관계없이 물체를 추적할 수 있다. 기존의 방법은 추적하려는 물체에 대해 하나의 모델만을 적용했기 때문에, 배경영역 색분포의 영향을 많이 받는다. 이를 해결하기 위해 다중 모델 색상 히스토그램 역투영 방법을 이용하였다. 이 방법은 추적하려는 물체에 대해 여러 개의 모델을 구하여 각각에 대해 색상 히스토그램 역투영을 수행한다 또한 역투영 이진 영상에서 물체의 위치를 결정하기 위한 수평, 수직 프로젝션 방법의 문제점을 레이블링(Labeling)을 사용하여 보완하였다.

  • PDF

퍼지 이진화 방법에 관한 연구 (A Study on Fuzzy Binarization Method)

  • 윤형근;이지훈;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.510-513
    • /
    • 2002
  • 대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimodal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을수 있으나, 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 포함되어 있으므로 스케치 특징점 유무를 판별하는 임계치의 결정에는 애매 모호함이 존재한다. 따라서 본 논문에서는 영상에 대해 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀값의 거리를 계산하여 밝기의 조정률을 구하여 최소 밝기값과 최대 밝기 값을 설정하고 삼각형의 소속 함수에 적용한다. 소속 함수에 적용된 소속도를 a-cut 을 적용하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 방법보다 제안된 퍼지 이진화 방법이 효율적인 것을 알 수 있었다.

  • PDF

색상분할영역에서 거리히스토그램을 이용한 영상검색 (Image Retrieval Using Distance Histogram of Clustered Color Region)

  • 장정동;이태홍
    • 한국통신학회논문지
    • /
    • 제26권7B호
    • /
    • pp.968-974
    • /
    • 2001
  • 최근 정보통신기술의 발전과 함께 영상매체의 급속한 증가로 영상의 효율적인 관리와 검색의 필요성이 요구되면서 내용기반 영상검색이 핵심기술로 대두되고 있다. 내용기반 영상검색에서 영상의 특징을 표현하기 위해 색상 히스토그램을 많이 사용하고 있으나, 색상만을 고려하는 것은 많은 단점을 지니고 있으므로 본 논문에서는 먼저 순차영역분할(sequential clustering)기법을 도입하여 영역을 분할하며, 분할된 영역의 색상평균값과 영역의 중심점으로부터의 거리 히스토그램을 영상의 특징으로 구하여 이를 비교함으로써 색상과 공간정보를 함께 고려하는 방법을 제안한다. 제안된 방법의 특성의 수가 18개로 타 방법보다 매우 작은 저장공간을 가지면서도 동시에 검색효율이 8.5% 이상 개선되었다. Precision 대 Recall에서도 각 질의영상에서 대부분의 Recall 값에서 제안한 방법의 우수함이 확인되었으며, 시각적으로도 양호한 검색결과를 얻을 수 있었다.

  • PDF

문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출 (Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images)

  • 박종천;황동국;이우람;전병민
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1167-1174
    • /
    • 2006
  • 자연이미지로부터 텍스트 영역 추출은 자동차 번호판 인식 등과 같은 많은 응용프로그램에서 유용하다. 따라서 본 논문은 문자-에지 맵의 패턴 히스토그램을 이용한 텍스트 영역을 추출하는 방법을 제안한다. 16종류의 에지맵을 생성하고, 이것을 조합하여 문자 특징을 갖는 8종류 문자-에지 맵 특징을 추출한다. 문자-에지 맵의 특징을 이용하여 텍스트 후보 영역을 추출하고, 텍스트 후보 영역에 대한 검증은 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하였다. 실험결과 제안한 방법은 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지로부터 텍스트 영역을 효과적으로 추출하였다.

  • PDF

가우시안 영역 분리 기반 명암 대비 향상 (Contrast Enhancement based on Gaussian Region Segmentation)

  • 심우성
    • 방송공학회논문지
    • /
    • 제22권5호
    • /
    • pp.608-617
    • /
    • 2017
  • 영역 분리에 의한 명암대비 방법들이 제안되어 왔지만 영상의 히스토그램에 따라 과포화 되는 부작용이나 밝기 값 보존과 명암대비 효과의 상반 관계에 대한 개선이 필요하다. 본 논문은 다양한 히스토그램에서도 명암 대비가 개선 되도록 영역 분리 시 각 서브 영역이 가우시안 분포를 갖도록 분리하고 영역별 평활화하는 명암 대비 방법을 제안 한다. 영역 분리는 $L^*a^*b^*$ 컬러 공간에서 K-평균 방법과 기대-최대 방법에 의해 영역맵과 확률맵을 생성하며 영역별 히스토그램 평활화 방법은 영역간 히스토그램 중복 최소를 위해 평균값 이동과 영역 분리에서 생성된 확률맵을 변환 함수에 활용함으로써 영역별 밝기값을 보존 하였다. 실험은 기존의 명암 대비 방법들과 평균 밝기 차이와 평균 엔트로피 값을 이용하여 밝기 변화가 적고 영상의 세부 정보가 표현됨에 의한 명암대비 개선을 보인다.