• Title/Summary/Keyword: 영역 분할 기법

Search Result 904, Processing Time 0.032 seconds

Spherical Pyramid-Technique : An Efficient Indexing Technique for Similarity Search in High-Dimensional Data (구형 피라미드 기법 : 고차원 데이터의 유사성 검색을 위한 효율적인 색인 기법)

  • Lee, Dong-Ho;Jeong, Jin-Wan;Kim, Hyeong-Ju
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1270-1281
    • /
    • 1999
  • 피라미드 기법 1 은 d-차원의 공간을 2d개의 피라미드들로 분할하는 특별한 공간 분할 방식을 이용하여 고차원 데이타를 효율적으로 색인할 수 있는 새로운 색인 방법으로 제안되었다. 피라미드 기법은 고차원 사각형 형태의 영역 질의에는 효율적이나, 유사성 검색에 많이 사용되는 고차원 구형태의 영역 질의에는 비효율적인 면이 존재한다. 본 논문에서는 고차원 데이타를 많이 사용하는 유사성 검색에 효율적인 새로운 색인 기법으로 구형 피라미드 기법을 제안한다. 구형 피라미드 기법은 먼저 d-차원의 공간을 2d개의 구형 피라미드로 분할하고, 각 단일 구형 피라미드를 다시 구형태의 조각으로 분할하는 특별한 공간 분할 방법에 기반하고 있다. 이러한 공간 분할 방식은 피라미드 기법과 마찬가지로 d-차원 공간을 1-차원 공간으로 변환할 수 있다. 따라서, 변환된 1-차원 데이타를 다루기 위하여 B+-트리를 사용할 수 있다. 본 논문에서는 이렇게 분할된 공간에서 고차원 구형태의 영역 질의를 효율적으로 처리할 수 있는 알고리즘을 제안한다. 마지막으로, 인위적 데이타와 실제 데이타를 사용한 다양한 실험을 통하여 구형 피라미드 기법이 구형태의 영역 질의를 처리하는데 있어서 기존의 피라미드 기법보다 효율적임을 보인다.Abstract The Pyramid-Technique 1 was proposed as a new indexing method for high- dimensional data spaces using a special partitioning strategy that divides d-dimensional space into 2d pyramids. It is efficient for hypercube range query, but is not efficient for hypersphere range query which is frequently used in similarity search. In this paper, we propose the Spherical Pyramid-Technique, an efficient indexing method for similarity search in high-dimensional space. The Spherical Pyramid-Technique is based on a special partitioning strategy, which is to divide the d-dimensional data space first into 2d spherical pyramids, and then cut the single spherical pyramid into several spherical slices. This partition provides a transformation of d-dimensional space into 1-dimensional space as the Pyramid-Technique does. Thus, we are able to use a B+-tree to manage the transformed 1-dimensional data. We also propose the algorithm of processing hypersphere range query on the space partitioned by this partitioning strategy. Finally, we show that the Spherical Pyramid-Technique clearly outperforms the Pyramid-Technique in processing hypersphere range queries through various experiments using synthetic and real data.

Scale Space Filtering based Parameters Estimation for Image Region Segmentation (영상 영역 분할을 위한 스케일 스페이스 필터링 기반 파라미터 추정)

  • Im, Jee-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.21-28
    • /
    • 1996
  • The nature of complexity of medical images makes them difficult to segment using standard techniques. Therefore the usual approaches to segment images continue to predominantly involve manual interaction. But it tediously consumes a good deal of time and efforts of the experts. Hereby a nonmanual parameters estimation which can replace the manual interaction is needed to solve the problem of redundant manual works for an image segmentation. This paper attempts to estimate parameters for an image region segmentation using Scale Space Filtering. This attempt results in estimating the number of regions, their boundary and each representatives to be segmented 2-dimensionally and 3-dimensionally. Using this algorithm, we may diminish the problem of wasted time and efforts for finding prerequisite segmentation parameters, and lead the relatively reasonable result of region segmentation.

  • PDF

Segmentation Algorithm using 3D Region Growing Based on Gradient Magnitude in Small-Animal PET Images (Small Animal PET 영상에서의 기울기 크기 기반 3차원 영역확장 분할 알고리즘)

  • Lee Yu-Bu;Kim Kyeong Min;Cheon Gi-Jeong;Kim Myoung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.703-705
    • /
    • 2005
  • 본 논문에서는 기울기 크기 기반의 3차원 영역확장 알고리즘을 사용하여 small animal PET(Positron Emission Tomography) 영상으로부터 종양을 분할하는 연구를 수행하였다. 픽셀 값의 범위가 다양하고 저해상도의 특성을 갖는 PET영상으로부터 대상영역을 정확하게 분할하기 위해서 전처리(preprocessing)과정으로 영상 픽셀값의 분포를 펼쳐줌으로써 영상의 가시화를 높이는 히스토그램 스트레칭(histogram stretching) 기법을 적용하고 대상영역과 픽셀값이 유사한 인접영역과의 경계를 찾기 위해 가우시안의 1차 미분 함수를 사용하여 계산된 기울기 크기(gradient magnitude) 기반의 3차원 영역확장(region growing) 알고리즘을 제안한다. 제안한 알고리즘은 영역확장의 결과에 가장 큰 영향을 미치는 적절한 동질성 기준의 선택으로 대상영역의 분할을 성공적으로 수행하여 일반적인 영역확장의 단점을 보완하였다.

  • PDF

A Novel Color Conversion Method for Color Vision Deficiency using Color Segmentation (색각 이상자들을 위한 컬러 영역 분할 기반 색 변환 기법)

  • Han, Dong-Il;Park, Jin-San;Choi, Jong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.37-44
    • /
    • 2011
  • This paper proposes a confusion-line separating algorithm in a CIE Lab color space using color segmentation for protanopia and deuteranopia. Images are segmented into regions by grouping adjacent pixels with similar color information using the hue components of the images. To this end, the region growing method and the seed points used in this method are the pixels that correspond to peak points in hue histograms that went through a low pass filter. In order to establish a color vision deficiency (CVD) confusion line map, we established 512 virtual boxes in an RGB 3-D space so that boxes existing on the same confusion line can be easily identified. After that, we checked if segmented regions existed on the same confusion line and then performed color adjustment in an CIE Lab color space so that all adjacent regions exist on different confusion lines in order to provide the best color identification effect to people with CVDs.

Region-Segmental Scheme in Local Normalization Process of Digital Image (디지털영상 국부정규화처리의 영역분할 구도)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.78-85
    • /
    • 2007
  • This paper presents a segmental scheme for regions-composed images in local normalization process. The scheme is based on local statistics computed through a moving window. The normalization algorithm uses linear or nonlinear functions to transfer the pixel distribution and the homogeneous affine of regions which is corrupted by additive noise. It adjusts the mean and standard deviation for nearest-neighbor interpoint distance between current and the normalized image signals and changes the segmentation performance according to local statistics and parameter variation adaptively. The performance of newly advanced local normalization algorithm is evaluated and compared to the performance of conventional normalization methods. Experimental results are presented to show the region segmentation properties of these approaches.

A Study on the Fast Motion Estimation Coding by Moving Region Segmentation (동영역 분할에 의한 고속 움직임 추정 부호화에 관한 연구)

  • Lee, Bong-Ho;Choi, Kyung-Soo;Kwak, No-Youn;Hwang, Byong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.88-97
    • /
    • 2000
  • This paper presents motion estimation method using region segmentation information Motion estimation which is very difficult to be implemented only by software because of intensive computation cost, is implemented by special-purpose hardware in real-time applications In this paper, we propose region based motion estimation algorithm which can reduce the computation cost by using region segmentation information and setting the variable search window compared with FSMA algorithm Secondly, another proposed algorithm is to segment semantic region like face for selective coding and transfer of semantic region using segmented region information This work alms to improving the subjective quality of skin color region or face region m the picture that has slow motion and IS mainly composed of one or two speakers of video conference and video telephony applications.

  • PDF

Body and Region of Interest Segmentation Algorithm for Chest X-ray Image (흉부 X-ray 영상에서 몸체 및 관심영역 분할 알고리즘)

  • Park, Jin Woo;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.133-134
    • /
    • 2015
  • 흉부 X-ray 영상에서 몸체 및 관심영역 분할 기법은 의료 X-ray 영상의 화질 개선 알고리즘을 더 효과적으로 적용하기 위해 전처리 단계로 영상의 물체와 배경을 분할하거나 관심영역만을 분할하는 방법이다. 보통 화질 개선 알고리즘을 적용할 때 영상의 밝기 정보나 주파수 정보를 이용하여 영상 디테일과 대비를 개선하는 방법을 사용한다. 영상 전체에 이러한 알고리즘을 적용하는 경우 불필요한 배경 정보가 포함되기 때문에 디테일과 대비가 떨어질 수 있다. 본 논문은 사용자가 보고자 하는 부분의 정보만을 사용하도록 물체를 분할하는 알고리즘을 제안한다. 1 단계로 몸체 분할 알고리즘을 이용하여 배경 성분의 정보를 제외하고 2 단계에서는 몸체의 중심인 폐와 폐사이의 장기 정보만을 볼 때의 관심영역 분할 알고리즘으로 팔이나 목, 복부의 불필요한 정보를 제외하는 방법을 제안한다.

  • PDF

A Ground Detection Technique based on Region Segmentation in Spherical Image (영역 분할에 기반한 구면 영상에서의 바닥 검출 기법)

  • Kim, Jong-Yoon;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.139-152
    • /
    • 2017
  • In this paper, we propose a ground area detection technique based on region segmentation in the spherical image. We modified the Watershed planar image segmentation method to segment spherical images. After regions are segmented, the ground area is detected by comparing colors and textures of pixels of the assumed ground region with the pixels of other regions. The ground detection technique for planar images cannot be used for spherical images due to the spherical distortion. Considering the spherical distortion, we designed the ground shape detection algorithm to detect the ground area in the spherical images. Our experimental results show that the proposed technique properly detects ground areas both for the flat ground and the obstacle-filled ground environments.

Multi-Object Detection Using Image Segmentation and Salient Points (영상 분할 및 주요 특징 점을 이용한 다중 객체 검출)

  • Lee, Jeong-Ho;Kim, Ji-Hun;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper we propose a novel method for image retrieval system using image segmentation and salient points. The proposed method consists of four steps. In the first step, images are segmented into several regions by JSEG algorithm. In the second step, for the segmented regions, dominant colors and the corresponding color histogram are constructed. By using dominant colors and color histogram, we identify candidate regions where objects may exist. In the third step, real object regions are detected from candidate regions by SIFT matching. In the final step, we measure the similarity between the query image and DB image by using the color correlogram technique. Color correlogram is computed in the query image and object region of DB image. By experimental results, it has been shown that the proposed method detects multi-object very well and it provides better retrieval performance compared with object-based retrieval systems.

Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image (고해상도 위성영상의 객체기반 분석을 위한 영상 분할 기법 개발 및 평가)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.627-636
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation to consider spectral and spatial information of high resolution satellite image. Firstly, the initial seeds were automatically selected using local variation of multi-spectral edge information. After automatic selection of significant seeds, a segmentation was achieved by applying MSRG which determines the priority of region growing using information drawn from similarity between the extracted each seed and its neighboring points. In order to evaluate the performance of the proposed method, the results obtained using the proposed method were compared with the results obtained using conventional region growing and watershed method. The quantitative comparison was done using the unsupervised objective evaluation method and the object-based classification result. Experimental results demonstrated that the proposed method has good potential for application in the object-based analysis of high resolution satellite images.