본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.
본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.
대부분의 영상색인 기법에서는 영상의 전역 특징값을 이용한다. 그러나 이러한 방법은 영상의 지역적인 변화들을 담아내지 못하기 때문에 만족할 만한 격과를 제공하지 못한다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법으로 영상의 특징점(salient point)과 영상분할을 이용하여 중요영역(important region)을 추출하는 새로운 영역기반 영상검색 시스템을 제안한다. 본 논문에서 제안하는 특징점 추출 기법은 기존의 방법과 비교하여 빠르고 정확한 추출 결과를 보여준다. 선택된 영역에서 추출된 칼라와 질감 정보를 이용하여 검색한 결과는 칼라나 질감 정보의 전력 특징값을 이용한 검색 방법의 결과보다 크게 향상됨을 알 수 있었다.
영상의 영역 분할을 통한 다시점 영상의 생성기법을 제안한다. 본 논문에서는 다시점 영상을 생성하기 위해 공간적으로 색상 정보와 시간적으로 움직임 정보를 이용하여 객체를 추출하고 이로부터 다시점 영상을 생성하게 된다. 색상 정보는 움직임 정보로는 정확한 외곽을 추출하지 못하기 때문에 정확한 외곽을 추출하기 위해 사용되어진다. 색상의 동질영역을 구분하기 위하여 휘도와 색차를 이용하며, 정합창을 사용하여 화소기반의 움직임 예측을 수행한다. 다음 단계로 색상 정보와 움직임 정보를 통해 독립적으로 얻어진 결과를 결합하게 된다. 움직임 예측을 통해 얹은 움직임의 세기값을 색상정보를 이용해 얻은 영역에 할당하고 이를 깊이값으로 변환하게 된다. 2차원의 입력 영상과 변환되어진 깊이값을 통해 회전변환의 과정을 거쳐서 최종의 다시점 영상이 생성된다. 실험을 통해서 제안된 알고리즘이 효과적으로 다시점 영상을 생성함을 확인할 수 있었다.
도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.
확률론적 방법을 이용한 MCNP4A 전산코드를 이용하여 두꺼운 차폐체내에서 효과적인 분산감소기법에 대하여 가장 단순화된 모델을 이용하여 고찰하여 보았다. 등방점선원과 이를 둘러싼 반경 50cm의 납차폐체를 계산을 위한 모빌로 사용하여 차폐체 내부 각 영역과 외부에서의 평균선속을 계산하였다. 분산감소기법으로는 구역분할법과 Exponential transform을 적용하여 각 구역에서의 분산의 변화를 비교하였다. 계산결과 두꺼운 차폐체문제에서는 exponential transform이 가장 효과적인 분산감소기법으로 나타났고 이때 구역분할법을 통하여서는 상대오차의 크기를 더욱 줄일 수 있었다.
최근 소개된 구글 MediaPipe의 모발 분할 방식은 실시간 모바일 애플리케이션을 위해 특별히 설계된 단일 카메라 입력에서 신경망 기반 모발 분할을 위한 새로운 접근 방식을 제시한다. 상대적으로 작은 신경망으로 가상 머리카락 다시 칠하기와 같은 증강 현실 효과에 매우 적합한 고품질 머리카락 분할 마스크를 생성한다. 그렇지만, 모발 스타일 또는 모발 영역에 잡음이 있는 경우에 모발 분할 정확도가 떨어지는 문제점들이 있다. 이에 본 연구에서는 지정된 라벨에서 모발 위치와 모발 색상 가능성의 추정된 사전 분포에 따라 이미지의 에너지 함수를 구성하고, 이것을 그래프 절단 알고리즘에 따라 최적화시키는 방식으로 초기 모발 영역을 얻는 방식을 도입한다. 그런 다음에, 초기 모발 영역에 클러스터링 알고리즘과 사후 처리 기법을 적용하여 최종 모발 영역을 정밀하게 분할 할 수 있도록 한다. 제안된 방식은 MediaPipe의 모발 분할 파이프라인에 적용된다.
본 연구에서는 화력 발전소 보일러에 대한 연소 및 열전달 해석을 위하여 화로 내부를 다중영역으로 나누고 각 영역에서 energy와 mass balance는 1차원으로 계산하고, 복사열전달은 3차원으로 계산하는 다중영역분할 화로해석 기법을 활용하였다. 그리고 적용 기법에 대한 신뢰성 검증을 위하여 국내 500 MW 급 석탄화력 보일러 화로에 대한 계산 값과 보일러 제작사의 설계 데이터를 비교하여 양호함을 확인하였고, 동일한 설비에 대한 CFD 해석과 비교한 결과 유사한 경향을 얻었다. 본 계산 기법은 CFD 화로해석 보다는 덜 상세하지만, 빠른 시간에 연료반응성, 화로형상 및 운전변수에 따른 특성을 계산할 수 있는 장점이 있으므로 발전소 현장에서의 설비감시진단 및 일일 연료/운전 계획 수립 등 활용성 측면에서 유용할 것으로 예상된다.
기존의 참조서명과 입력서명을 비교하는 방법 중 분절 단위 비교 방법은 전역적 방법과 점단위 방법에 비하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 본 연구에서는 분절 단위 비교 방법을 이용한 서명검증의 신뢰도를 향상시키기 위해 두 가지 형태의 모델을 구축하였다. 우선 기존에 사용된 구간 분할 매칭 방법을 사용하여 매칭도를 산출하였다. 다음으로 서명의 분할된 영역을 주성분 분석 기법에 의해 특징 벡터를 산출한 후 HMM에 의해 서명 모델을 구축하였다. 산출된 두 특징을 융합하는 방법으로는 SVM 분류기를 사용하였다 실험 결과 제안된 기법은 분절 단위 기반의 구간분할매칭 기법에 비해 우수한 성능을 나타냈다.
컴퓨터 비전에서 딥러닝을 활용한 이미지 분할 기법은 핵심 분야 중 하나이다. 이미지 분할 기법이 다양한 도메인에 사용되면서 딥러닝 네트워크의 오작동을 일으키는 적대적 공격에 대한 방어와 강건함이 요구되고 있으며 자율주행 자동차, 질병 분석과 같이 모델의 보안 취약성이 심각한 사고를 불러 올 수 있는 영역에서 적대적 공격은 많은 관심을 받고 있다. 본 논문에서는 이미지 분할 기법에 따른 구별방법과 최근 연구되고 있는 적대적 공격의 방향성을 설명하며 향후 컴퓨터 비전 분야 연구의 효율성을 위해 중점적으로 검토되고 있는 연구주제를 설명한다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.