• 제목/요약/키워드: 영역 분할 기법

검색결과 901건 처리시간 0.031초

지문 영상 분류를 위한 특이점 추출 알고리즘에 관한 연구 (A Study On Singular Points Extraction Algorithm for Finger Classification)

  • 오창섭;최경삼;조성원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.319-322
    • /
    • 2000
  • 본 논문에서는 지문영상으로부터 제안한 알고리즘을 이용하여 특이점(Core, Delta)을 추출한 후 특이점의 개수와 종류에 따라서 5가지 부류(arch, tented arch, left loop, right loop, whorl)로 지문영상을 분류하였다. 지문영상을 8*8블록과 16*16블록으로 분할한 후 3*3 Sobel 마스크를 씌워서 대표 방향을 구하였다. 또한 블록으로 분할한 영상으로부터 분산을 구하여 전경과 배경을 분리(segmentation)시켜 수행속도를 향상시켰다. 전처리 과정으로는 일정한 블록마다 임계값을 다르게 적용시키는 블록 이진화 기법을 사용하였으며 특이점을 추출하기 위해서 서로 크기가 다른 2개의 블록으로 영상을 분할하였다. 우선 8*8블록으로 영역을 분할한 후 방향 성분을 구하고 특이점들을 추출하였다. 이 경우 잡영 때문에 특이점이 너무 많이 추출되는 문제점이 있으므로 이러한 해결책으로 16*16블록으로 영역을 분할하여 방향 성분을 구하고 특이점을 추출하였다. 이렇게 다른 두 영역에서 동시에 나타나는 특이점을 후보 특이점으로 잡아서 그 후보 특이점 주변으로 Poincare 지수를 적용하여 확실한 특이점을 선택한 후 5가지의 지문 형태로 분류하였다. 실험결과 대부분의 지문영상에 대하여 강건한 분류 특성을 보이고 있음을 확인하였다.

  • PDF

내용기반 검색을 위한 분할된 영상객체간 유사도 판별 (Computing Similarities between Segmented Objects in the image for Content-Based Retrieval)

  • 유헌우;장동식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.358-360
    • /
    • 2001
  • 본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.

  • PDF

영상분할과 특징점 추출을 이용한 영역기반 영상검색 시스템 (A Region-based Image Retrieval System using Salient Point Extraction and Image Segmentation)

  • 이희경;호요성
    • 방송공학회논문지
    • /
    • 제7권3호
    • /
    • pp.262-270
    • /
    • 2002
  • 대부분의 영상색인 기법에서는 영상의 전역 특징값을 이용한다. 그러나 이러한 방법은 영상의 지역적인 변화들을 담아내지 못하기 때문에 만족할 만한 격과를 제공하지 못한다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법으로 영상의 특징점(salient point)과 영상분할을 이용하여 중요영역(important region)을 추출하는 새로운 영역기반 영상검색 시스템을 제안한다. 본 논문에서 제안하는 특징점 추출 기법은 기존의 방법과 비교하여 빠르고 정확한 추출 결과를 보여준다. 선택된 영역에서 추출된 칼라와 질감 정보를 이용하여 검색한 결과는 칼라나 질감 정보의 전력 특징값을 이용한 검색 방법의 결과보다 크게 향상됨을 알 수 있었다.

영상의 영역 분할을 이용한 다시점 영상 생성기법 (The Conversion of 2 Dimension Images by Segmentation into Multi-View Images)

  • 백윤기;최미남;허남호;김진웅;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2006년도 학술대회
    • /
    • pp.45-48
    • /
    • 2006
  • 영상의 영역 분할을 통한 다시점 영상의 생성기법을 제안한다. 본 논문에서는 다시점 영상을 생성하기 위해 공간적으로 색상 정보와 시간적으로 움직임 정보를 이용하여 객체를 추출하고 이로부터 다시점 영상을 생성하게 된다. 색상 정보는 움직임 정보로는 정확한 외곽을 추출하지 못하기 때문에 정확한 외곽을 추출하기 위해 사용되어진다. 색상의 동질영역을 구분하기 위하여 휘도와 색차를 이용하며, 정합창을 사용하여 화소기반의 움직임 예측을 수행한다. 다음 단계로 색상 정보와 움직임 정보를 통해 독립적으로 얻어진 결과를 결합하게 된다. 움직임 예측을 통해 얹은 움직임의 세기값을 색상정보를 이용해 얻은 영역에 할당하고 이를 깊이값으로 변환하게 된다. 2차원의 입력 영상과 변환되어진 깊이값을 통해 회전변환의 과정을 거쳐서 최종의 다시점 영상이 생성된다. 실험을 통해서 제안된 알고리즘이 효과적으로 다시점 영상을 생성함을 확인할 수 있었다.

  • PDF

격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할 (Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values)

  • 김구진;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1369-1382
    • /
    • 2005
  • 도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.

  • PDF

두꺼운 감마선 차폐체 문제에 대한 분산감소기법연구

  • 윤정현;최병일;이인구;조규성
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.547-552
    • /
    • 1996
  • 확률론적 방법을 이용한 MCNP4A 전산코드를 이용하여 두꺼운 차폐체내에서 효과적인 분산감소기법에 대하여 가장 단순화된 모델을 이용하여 고찰하여 보았다. 등방점선원과 이를 둘러싼 반경 50cm의 납차폐체를 계산을 위한 모빌로 사용하여 차폐체 내부 각 영역과 외부에서의 평균선속을 계산하였다. 분산감소기법으로는 구역분할법과 Exponential transform을 적용하여 각 구역에서의 분산의 변화를 비교하였다. 계산결과 두꺼운 차폐체문제에서는 exponential transform이 가장 효과적인 분산감소기법으로 나타났고 이때 구역분할법을 통하여서는 상대오차의 크기를 더욱 줄일 수 있었다.

  • PDF

위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할 (Hair Classification and Region Segmentation by Location Distribution and Graph Cutting)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.1-8
    • /
    • 2022
  • 최근 소개된 구글 MediaPipe의 모발 분할 방식은 실시간 모바일 애플리케이션을 위해 특별히 설계된 단일 카메라 입력에서 신경망 기반 모발 분할을 위한 새로운 접근 방식을 제시한다. 상대적으로 작은 신경망으로 가상 머리카락 다시 칠하기와 같은 증강 현실 효과에 매우 적합한 고품질 머리카락 분할 마스크를 생성한다. 그렇지만, 모발 스타일 또는 모발 영역에 잡음이 있는 경우에 모발 분할 정확도가 떨어지는 문제점들이 있다. 이에 본 연구에서는 지정된 라벨에서 모발 위치와 모발 색상 가능성의 추정된 사전 분포에 따라 이미지의 에너지 함수를 구성하고, 이것을 그래프 절단 알고리즘에 따라 최적화시키는 방식으로 초기 모발 영역을 얻는 방식을 도입한다. 그런 다음에, 초기 모발 영역에 클러스터링 알고리즘과 사후 처리 기법을 적용하여 최종 모발 영역을 정밀하게 분할 할 수 있도록 한다. 제안된 방식은 MediaPipe의 모발 분할 파이프라인에 적용된다.

발전용 보일러에 대한 다중영역분할 화로해석 기법의 활용성 연구 (Study on the Multi-Zone Furnace Analysis Method for Power Plant Boiler)

  • Baek, SeHyun;kim, Donggyu;Lee, Jang Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.427-432
    • /
    • 2020
  • 본 연구에서는 화력 발전소 보일러에 대한 연소 및 열전달 해석을 위하여 화로 내부를 다중영역으로 나누고 각 영역에서 energy와 mass balance는 1차원으로 계산하고, 복사열전달은 3차원으로 계산하는 다중영역분할 화로해석 기법을 활용하였다. 그리고 적용 기법에 대한 신뢰성 검증을 위하여 국내 500 MW 급 석탄화력 보일러 화로에 대한 계산 값과 보일러 제작사의 설계 데이터를 비교하여 양호함을 확인하였고, 동일한 설비에 대한 CFD 해석과 비교한 결과 유사한 경향을 얻었다. 본 계산 기법은 CFD 화로해석 보다는 덜 상세하지만, 빠른 시간에 연료반응성, 화로형상 및 운전변수에 따른 특성을 계산할 수 있는 장점이 있으므로 발전소 현장에서의 설비감시진단 및 일일 연료/운전 계획 수립 등 활용성 측면에서 유용할 것으로 예상된다.

구간 분할 및 HMM 기반 융합 모델에 의한 온라인 서명 검증 (On-line Signature Verification Using Fusion Of Segment Matching and HMM)

  • 양동화;이대종;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.271-274
    • /
    • 2004
  • 기존의 참조서명과 입력서명을 비교하는 방법 중 분절 단위 비교 방법은 전역적 방법과 점단위 방법에 비하여 우수한 장점을 가지고 있다. 그러나 분절 단위 비교 방법은 인식률과 직접적인 관계가 있는 분절의 불안정 문제점이 있다. 본 연구에서는 분절 단위 비교 방법을 이용한 서명검증의 신뢰도를 향상시키기 위해 두 가지 형태의 모델을 구축하였다. 우선 기존에 사용된 구간 분할 매칭 방법을 사용하여 매칭도를 산출하였다. 다음으로 서명의 분할된 영역을 주성분 분석 기법에 의해 특징 벡터를 산출한 후 HMM에 의해 서명 모델을 구축하였다. 산출된 두 특징을 융합하는 방법으로는 SVM 분류기를 사용하였다 실험 결과 제안된 기법은 분절 단위 기반의 구간분할매칭 기법에 비해 우수한 성능을 나타냈다.

  • PDF

Segmentation 기반 적대적 공격 동향 조사 (Research Trends of Adversarial Attacks in Image Segmentation)

  • 홍윤영;신영재;최창우;김호원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.631-634
    • /
    • 2022
  • 컴퓨터 비전에서 딥러닝을 활용한 이미지 분할 기법은 핵심 분야 중 하나이다. 이미지 분할 기법이 다양한 도메인에 사용되면서 딥러닝 네트워크의 오작동을 일으키는 적대적 공격에 대한 방어와 강건함이 요구되고 있으며 자율주행 자동차, 질병 분석과 같이 모델의 보안 취약성이 심각한 사고를 불러 올 수 있는 영역에서 적대적 공격은 많은 관심을 받고 있다. 본 논문에서는 이미지 분할 기법에 따른 구별방법과 최근 연구되고 있는 적대적 공격의 방향성을 설명하며 향후 컴퓨터 비전 분야 연구의 효율성을 위해 중점적으로 검토되고 있는 연구주제를 설명한다