Journal of the Korea Society of Computer and Information
/
v.12
no.2
s.46
/
pp.47-52
/
2007
Conventional pixel based region segmentation methods have problems of long processing time and incorrect region split on account of performing region split through comparison of neighboring pixels. In this paper, we propose the method which segments a large size of satellite image effectively using modified centroid linkage method. This method is a sort of region split and merge. The proposed method merges pixels and makes them as a new region through only two directional comparing the current positioning pixel with neighbor ones, if they are satisfied with given conditions. Therefore, this method has less comparing time than the cases of previous ones. The experimental result shows that the proposed method is very efficient because of having less processing time and more exact segmented regions than the previous ones.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.435-437
/
1998
영상에 대한 영역분할은 영상에 대한 인식 시스템에서 가장 중요하고도 어려운 분야로 알려져 있다. 주로 사용되는 방법은 화소중심기법과 영역중심기법이 사용되는데, 화소중심기법은 적은 시간이 걸리는데 비해 영역분할 효과가 떨어지고, 영역중심기법은 상대적으로 양질의 영역분할 효과를 얻을 수 있지만 많은 시간이 걸린다. 본 논문에서는 영역분할에 대한 방법으로 thresholding방법을 이용한 2단계로 이루어진 영역분할 방법을 제안한다. 제안된 방법은 화소의 전역정보와 지역정보를 모두 사용하여 기존의 전역 thresholding방법에 비해 향상된 영역 분할을 수행하고, 지역정보를 이용하는 영역중심 기법에 비해 시간을 단축하는 효과를 가지고 있다. 첫 번째 단계에서는 기존에 알려진 전역 thresholding방법을 사용하여 영역분할을 하고, 두 번째 단계에서는 영상에 대해 미리 알려진 사전지식을 이용하여 영역분할이 제대로 되지 않은 영역을 구분하여 해당 영역에 대해서만 thresholding작업을 수행한다. 사용된 영상은 자궁경부 세포진 영상으로 대상이 되는 영역은 자궁경부 세포의 핵으로 제한하였다.
얼굴영역을 분할하기 위해서 Watershed Algorithm 와 Object Grouping 을 이용한 얼굴영역 분할기법을 제안한다. 영상분할에 단점은 단일 알고리즘으로 영역분할이 어렵고, 또한 복잡한 영상에서 정확한 영역을 분할하기가 어렵다는 것이다. 그래서 본 논문에서는 Watershed Segmentation 기법과 Grouping 작업을 통한 병합, 그리고 색상의 선형회귀분석을 이용한 분석법을 적용하여 분할하고자 한다. 얼굴영역 분할방법을 전처리 과정과 영역 병합 그리고 얼굴 부분을 추출하는 3 단계의 과정으로 나누고, 전처리 과정에서는 수리형태학적(Mophological) 연산자를 이용한 영상 분할기법을 이용하여 분할한 후 얼굴 후보 영역을 검출, 영역병합과정에서 기존의 학습데이터와의 유사도를 측정, 얼굴객체추출 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다. 실험결과 제안한 방법을 통해 비교적 정확한 얼굴영역을 분할 할 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.11a
/
pp.106-107
/
2015
본 논문에서는 색상 및 깊이 기반 영상 분할 기법을 제안한다. 계층화된 영상 분할을 수행하기 위해서 색상을 기준으로 영상을 과분할 한 후, 과분할 영역의 깊이를 기준으로 영역 병합을 수행한다. 적은 개수의 화소로 이루어진 병합 영역을 제거하기 위해서 인접한 분할 영역 중 화소 수가 많은 영역에 병합시키는 이상영역 처리 기법을 수행한다. 제안하는 영상 분할 기법을 기존의 데이터셋 및 키넥트 취득 영상에 적용하여 신뢰도 높은 객체 단위 영상 분할이 이루어짐을 확인한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.12C
/
pp.1147-1153
/
2009
We propose a novel image segmentation and segment-based stereo matching technique using color, depth, and motion information. Proposed technique firstly splits reference images into foreground region or background region using depth information from depth camera. Then each region is segmented into small segments with color information. Moreover, extracted segments in current frame are tracked in the next frame in order to maintain depth consistency between frames. The initial depth from the depth camera is also used to set the depth search range for stereo matching. Proposed segment-based stereo matching technique was compared with conventional one without foreground and background separation and other conventional one without motion tracking of segments. Simulation results showed that the improvement of segment extraction and depth estimation consistencies by proposed technique compared to conventional ones especially at the static background region.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.712-714
/
2004
본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.904-906
/
2005
본 논문에서는 뇌 CT 혈관조영영상에서 슬라이스 정보를 이용한 뇌 분할 방법을 제안한다. 뇌 분할 과정은 현재 슬라이스와 이전 슬라이스 간 분할 영역의 크기 정보를 가지고 영역 성장 단계와 전파 단계로 구분하여 수행된다. 영역 성장 단계에서는 이차원 영역성장법을 통해 뇌 분할을 수행하고 누출이 발생하는 슬라이스에 대하여 방사선 투과 기법을 통해 영역보정을 수행한다. 전파 단계에서는 이전 슬라이스에서 분할된 뇌 영역을 현재 슬라이스로 전파함으로써 장벽을 생성하고 장벽 내에서 이차원 영역성장법을 수행함으로써 누출을 최소화한다. 또한 뇌 영역과 유사한 밝기값을 형성하고 있는 미세 요소들을 제거하기 위해 이차원 연결화소군 레이블링 기법을 통해서 최종적으로 뇌 분할을 수행한다. 본 논문의 실험을 위하여 뇌 CT 혈관조영영상을 사용하여 정확한 뇌분할 결과를 얻었다.
This paper proposes a skin segmentation method based on region histograms of the color quantization map. First, we make a quantization map of the image using the JSEG algorithm and detect the skin pixel. For the skin region detection, the similar neighboring regions are set by its similarity of the size and location between the previous frame and the present frame from the each region of the color quantization map. Then we compare the similarity of histogram between the color distributions of each quantized region and the skin color model using the histogram distance. We select the skin region by the threshold value calculated automatically. The skin model is updated by the skin color information from the selected result. The proposed algorithm was compared with previous algorithms on the ECHO database and the continuous images captured under time varying illumination for adaptation test. Our approach shows better performance than previous approaches on skin color segmentation and adaptation to varying illumination.
This paper proposes an image segmentation technique using watershed algorithm followed by region merging method. A gradient image is obtained by applying multiscale gradient algorithm to the image simplified by morphological filters. Since the watershed algorithm produces the oversegmented image. it is necessary to merge small segmented regions as wel]' as region having similar characteristics. For region merging. we utilize the merging criteria based on both the mean value of the pixels of each region and the edge intensities between regions obtained by the contour following process. Experimental results show that the proposed method produces meaningful image segmentation results.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.598-600
/
2000
영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역 분할이 필요하다. 통계적 모델을 이용한 영상의 영역 분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역 분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 클러스터링 알고리즘을 통한 영상의 영역 분할 시 노이즈 문제를 이웃한 픽셀들의 멤버쉽 값을 평균화함으로써 해결하는 방법을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.