본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.
본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 본 논문에서 제안하는 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 빠른 시간 내에 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.
본 논문에서는 합성곱 신경망을 이용한 유기된 물체 인식 방법을 제안한다. 유기된 물체 인식 방법은 영상 내에서 유기 물체에 대한 영역을 먼저 검출하며 검출된 영역이 있을 경우 해당 영역에 합성곱 신경망을 적용하여 어떤 물체를 나타내는지 인식하는 과정을 거친다. 실험은 쓰레기 무단투기를 검출하는 응용 시스템을 통해 진행되었다. 실험 결과, 유기 물체에 대한 영역을 효율적으로 검출하는 것을 볼 수 있었다. 검출된 영역은 합성곱 신경망으로 들어가 쓰레기인지 아닌지 분류되는 과정을 거쳤다. 이를 위해 자체적으로 수집한 쓰레기 데이터와 오픈 데이터베이스로 합성곱 신경망을 학습시켰다. 학습 결과, 학습에 포함되지 않은 테스트셋에 대해 약 97%의 정확도를 달성하였다.
본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.
본 논문에서는 얼굴인식 성능 향상을 위해 얼굴 지역 영역 영상들로 학습된 다중개의 심층 합성곱 신경망(Deep Convolutional Neural Network)으로부터 추출된 심층 지역 특징들(Deep local features)을 가중치를 부여하여 결합하는 방법을 제안한다. 제안 방법에서는 지역 영역 집합으로 학습된 다중개의 심층 합성곱 신경망으로부터 추출된 심층 지역 특징들과 해당 지역 영역의 중요도를 나타내는 가중치들을 결합한 특징표현인 '가중치 결합 심층 지역 특징'을 형성한다. 일반화 얼굴인식 성능을 극대화하기 위해, 검증 데이터 집합(validation set)을 사용하여 지역 영역에 해당하는 가중치들을 계산하고 가중치 집합(weight set)을 형성한다. 가중치 결합 심층 지역 특징은 조인트 베이시안(Joint Bayesian) 유사도 학습방법과 최근접 이웃 분류기(Nearest Neighbor classifier)에 적용되어 테스트 얼굴영상의 신원(identity)을 분류하는데 활용된다. 제안 방법은 얼굴영상의 자세, 표정, 조명 변화에 강인하고 기존 최신 방법들과 비교하여 얼굴인식 성능을 향상시킬 수 있음이 체계적인 실험을 통해 검증되었다.
딥러닝은 인간의 학습 및 인지능력을 닮은 인공지능을 실현하기 위해 여러 분야에서 활용하고 있으며, 높은 사양의 컴퓨팅 파워가 요구되고 연산 시간이 많이 소요되는 복잡한 구조의 인공신경망에 의한 딥러닝은 컴퓨터 사양이 향상됨에 따라 성능이 개선된 다양한 딥러닝 모델이 개발되고 있다. 본 논문의 주요 목적은 영상의 딥러닝을 위한 합성곱 신경망 중에서 최근에 FAIR (Facebook AI Research)에서 개발한 Mask R-CNN을 이용하여 항공영상에서 건물을 탐지하고 성능을 평가하는 것이다. Mask R-CNN은 영역기반의 합성곱 신경망으로서 픽셀 정확도까지 객체를 의미적으로 분할하기 위한 딥러닝 모델로서 성능이 가장 우수한 것으로 평가받고 있다. 딥러닝 모델의 성능은 신경망 구조뿐 아니라 학습 능력에 의해 결정된다. 이를 위해 본 논문에서는 모델의 학습에 이용한 영상에 다양한 변화를 주어 학습 능력을 분석하였으며, 딥러닝의 궁극적 목표인 범용화의 가능성을 평가하였다. 향후 연구방안으로는 영상에만 의존하지 않고 다양한 공간정보 데이터를 복합적으로 딥러닝 모델의 학습에 이용하여 딥러닝의 신뢰성과 범용화가 향상될 것으로 판단된다.
본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 피사계 심도(Depth of field, DoF) 영역을 효율적인 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 안정적으로 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.
딥러닝의 발전과 함께 합성곱 신경망 기반의 이미지 내 글자 영역 검출(Scene Text Detection) 방법들이 제안됐다. 그러나 이러한 방법들은 대부분 데이터셋이 제공하는 단어의 위치 정보만을 이용할 뿐 글자 영역이 갖는 고유한 정보인 글자 수는 활용하지 않는다. 따라서 본 논문에서는 글자 수 정보를 학습하여 효과적으로 이미지 내의 글자 영역을 검출하는 모듈을 제안한다. 제안하는 방법은 간단한 합성곱 신경망으로 구성된 이미지 내 글자 영역 검출 모델에 글자 수를 예측하는 모듈을 추가하여 학습을 진행하였다. 글자 영역 검출 성능 평가에 널리 사용되는 ICDAR 2015 데이터셋을 통해 기존 방법 대비 성능이 향상됨을 보였고, 글자 수 정보가 글자 영역을 감지하는 데 유효한 정보임을 확인했다.
폐질환 진단에서 청진은 다른 진단 방식에 비해 단순하고, 폐음을 이용하여 폐질환 환자식별뿐 아니라 폐음과 관련된 질병을 예측할 수 있다. 따라서 본 논문에서는 다양한 합성곱 신경방 방식을 기반으로 폐음을 이용하여 폐질환 환자를 식별하고, 소리특성에 따른 폐음을 분류하여 각 신경망 방식의 분류 성능을 비교한다. 먼저 폐질환 소견을 갖는 흉부 영역에서 단채널 폐음 녹음기기를 이용하여 폐음 데이터를 수집하고, 수집된 시간축 신호를 스펙트럼 형태의 특징값으로 추출하여 각 분류 신경망 방식에 적용한다. 폐 사운드 분류 방식으로는 일반적인 합성곱 신경망, 병렬 구조, 잔류학습이 적용된 구조의 합성곱 신경망을 사용하고 실험을 통해 각 신경망 모델의 폐음 분류 성능을 비교한다.
본 연구에서는 CCTV 영상 내 빗줄기의 특성을 바탕으로 강우강도를 산정하기 위한 합성곱 신경망(CNNs, Convolutional Neural Networks) 기반 강우강도 산정 모형을 제안하였다. 중앙대학교 및 한국건설생활환경시험연구원 내 대형기후환경시험실에서 얻은 CCTV 영상들을 대상으로 연구를 수행하고, 우적계 등과 같은 지상 관측자료와 강우강도 산정 결과를 비교·검증하였다. 먼저, CCTV 영상 내 빗줄기의 미세한 변동 특성을 반영하기 위해 데이터 전처리 작업을 진행하였다. 이는 원본 영상으로부터 빗줄기 층을 분리해내는 과정, 빗줄기 층에서 빗물 입자를 분리해내는 과정, 그리고 빗물 입자를 인식하는 과정 등 총 세 단계로 구분된다. 합성곱 신경망 기반 강우강도 산정 모형 구축을 위해 영상 전처리가 완료된 데이터들을 입력값으로 설정하고, 촬영 시점에 대응되는 지상관측 자료를 출력값으로 고려하여 강우강도 산정모형을 훈련시켰다. CCTV 원자료 내 특정 영역에 편향되어 강우강도를 산정하는 과적합 현상의 발생을 방지하기 위해 원자료 내 5개의 관심 영역(ROI, Region of Interest)을 설정하였다. 추가로, CCTV의 해상도를 총 4개(2560×1440, 1920×1080, 1280×720, 720×480)로 구분함으로써 해상도 변화에 따른 학습 결과의 차이를 분석·평가하였다. 이는 기존 사례들과 비교했을 때, CCTV 영상을 기반으로 빗줄기의 거동 특성과 같은 물리적인 현상을 직간접적으로 고려하여 강우강도를 산정했다는 점과 더불어 머신러닝을 적용하여 강우 이미지가 갖는 본질적인 특징들을 파악했다는 측면에서, 추후 본 연구에서 제안한 모형의 활용 가치가 극대화될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.