• Title/Summary/Keyword: 영역기반 영상 검색

Search Result 258, Processing Time 0.022 seconds

A Study on Region matching method for Region-based Image Retrieval (영역 기반 이미지 검색을 위한 영역 매칭 방법에 관한 연구)

  • 추연웅;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.

  • PDF

Content-based Image Retrieval Using Region Color and Keyword (영역 색상과 키워드를 이용한 내용기반 영상검색)

  • 김지영;정성호;황병곤
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.05a
    • /
    • pp.68-74
    • /
    • 1999
  • 본 논문에서는 영상의 내용을 나타내는 키워드를 이용하는 기존의 텍스트 기반 영상 검색과 영역 색상 정보를 이용한 내용 기반 영상 검색을 결합한 시스템을 구현함으로서, 보다 효과적인 영상 검색을 할 수 있도록 하였다. 영상의 크기는 입력된 원 영상을 사용하였으며, 색상 정보 추출에 있어 HSI 공간으로 변환하여 256개의 칼라로 양자화하였다. 보통의 정지 영상의 경우 대부분의 객체가 중앙에 있을 경우를 고려하여, 영상을 중앙 영역과 배경 영역으로 구분하고, 각각의 영역에서 두 개의 히스토그램을 생성한다. 중앙 영역과 배경영역의 히스토그램 인터섹션을 이용한 검색을 실험하였고, 영역색상과 기존의 키워드를 결합한 검색도 또한 실험하였다. 기존의 히스토그램 인터섹션의 경우 Precision/Recall이 0.34/0.60인데 비해 영역 색상 히스토그램을 인터섹션한 경우의 Precision/Recall은 0.69/0.76이고 키워드를 결합한 경우의 Precision/Recall은 0.92/0.80를 얻음으로써, 제안된 방식의 검색이 비교적 효율적임을 보였다.

  • PDF

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF

Content-Based Image Retrieval Using Color Correlogram From an Image Segmented by the Wavelet Transform (웨이브릿을 이용한 영역 분할과 칼라 코렐로그램을 이용한 내용기반 영상검색)

  • 예병길;안강식;안명석;조석제
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.235-238
    • /
    • 2001
  • 최근 효과적인 내용기반 영상검색을 위해 특징 추출 방법이 많이 연구되고 있다. 특히 칼라 정보를 이용하여 특징을 얻는 방법은 여러 가지 장점 때문에 많이 사용되고 있다 본 논문에서는 칼라 코렐로그램(color correlogram) 기반의 새로운 특징 추출 방법을 제안한다. 제안한 방법은 웨이브릿 변환 계수를 사용하여 영상을 복잡한 영역과 그렇지 않은 영역으로 분할하고, 각 영역의 칼라 코렐로그램을 영상의 특징으로 사용해 영상을 검색하는 방법이다. 제안한 방법으로 영상을 검색하는 방법은 기존의 칼라 코렐로그램을 이용한 방법보다 성능이 우수함을 실험에서 확인할 수 있었다.

  • PDF

Implementation of Image-Retrieval System Using Automatic Object Region Extraction and Property of GLCM-based Texture (자동 객체 영역 추출과 GLCM 기반 Texture특징을 이용한 영상 검색 시스템 구현)

  • Kim, Seong-Bin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.255-257
    • /
    • 2008
  • 본 논문에서는 최근 IT 기술의 발전에 따라 무수히 양산되고 있는 멀티미디어 데이터를 효율적으로 검색하기 위한 방법을 제안한다. 영상 검색 시스템에 사용되는 데이터베이스(DB) 영상들에 존재하는 각 객체들의 존재 영역을 기반으로 질의 영상 (query image)의 객체 영역을 추정해서 검색에 활용하는 것이다. 이는 질의 영상의 전체 영역으로부터 객체를 추정하는 것보다 데이터베이스 영상들로부터 추출한 통계적 객체 분포 범위를 기반으로 추정하기 때문에 빨리 객체 추출이 가능하도록 한다. 따라서 객체를 추출하기 위한 배경 지식이나, 사용자 입력이 전혀 필요 없다. 이렇게 추출된 객체 영역의 영상들로부터 GLCM 알고리즘을 이용해서 객체 영역의 특성이 잘 반영된 질감 특징 값을 바탕으로 검색에 활용 할 경우 원본 영상의 질감 특징을 활용한 경우보다, 객체의 질감 특징을 더 잘 반영한다는 것을 실험을 통해 확인할 수 있었다.

  • PDF

FRIP Stystem For Region-based Image Retrieval (영역기반 검색환경을 위한 FRIP 시스템)

  • 고병철;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.499-501
    • /
    • 2000
  • 본 논문에서는 영역기반 검색환경을 제공하는 FRIP(Finding Region in the Pictures) 시스템을 소개한다. FRIP 시스템은 영역 기반 검색환경을 제공하기 위해서, 우선적으로 영상을 분할하고, 각 분할된 영역으로부터 색상, 질감, 크기, 모양, 위치 정보와 같은 최적의 특징 벡터들을 추출하여 색인화시킨다. 그런 뒤에, 사용자가 검색하고자 하는 영역과 검색 영상 수 k를 입력하면, 유사성 측정 식에 의해 가장 유사한 k만큼의 영상을 우선 순위 형태로 사용자에 보여주게 된다. 본 시스템에서는 영상을 분할하기 위해서 기본적인 RGB 색상계를 확장(Scaling 및 이동(Shifting) 알고리즘을 통해 영상의 대비 정도가 향상된 새로운 색상계로 변환시키고, 원형 필터를 설계하여, 영역 안에 포함된 의미 없는 작은 영역을 제거하도록 하였다. 그리고 이렇게 분할된 각 영역들로부터, 본 시스템에서 제안하는 모양 기술자인 MRS(Modified Radius-based Signature)를 포함하여 5가지의 최적의 특징 벡터들을 전처리 단계에서 데이터베이스에 색인으로 저장하고 유사성 측정을 위한 수치로 사용하였다.

  • PDF

Content-based Image Reterieval Using Color and Chain Code (색상과 Chain Code를 이용한 내용기반 영상검색)

  • 정성호;이상렬;황병곤
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.12a
    • /
    • pp.193-198
    • /
    • 1999
  • 본 논문에서는 영상의 내용을 나타내는 색상과 체인 코드에 기반한 복잡도와 영역 색정보를 이용한 내용 기반 영상 검색을 결합한 시스템을 구현하였다. 실험 대상으로 선택한 꽃 영상의 경우 대부분의 인식 대상 객체가 중앙에 있을 경우를 고려하여, 영상을 중앙 영역과 전체 영역으로 구분하고, 각각의 영역에서 두 개의 히스토그램을 생성한다. 그리고 전체 영역에 대한 기준치를 구하고 chain code글 이용한 복잡도를 구하였다. 중앙영역과 전체영역의 히스토그램 인터섹션을 이용한 검색을 실험하였고, 영역 색상과 복잡도를 결합한 검색도 또한 실험하였다. 기존의 히스토그램 인터섹션의 경우 Precision/Recall이 0.370/0.60인데 비해 영역 색상 히스토그램을 인터섹션한 경우의 Precision/Recall은 0.69/0.76이고 복잡도를 결합한 경우의 Precision/Recall은 0.92/0.80를 얻음으로써, 제안된 방식의 검색이 비교적 효율적임을 보였다.

  • PDF

Implement that Content-based Image Retrieval Using Color and Chain Code to WWW (색상과 Chain code를 이용한 내용기반 영상 검색 시스템을 WWW에 구현)

  • 이상열;황병곤;정성호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.601-603
    • /
    • 2000
  • 본 논문에서는 영상의 영역과 넓이를 이용하는 변형된 체인 코드에 기반한 복잡도와 영역 색상 정보를 이용한 내용 기반 영상 검색을 결합하여 WWW상에서 검색하는 시스템을 구현하였다. 입력된 영상을 이용하여 검색하는 방법을 사용하였으며, 색상 정보 추출은 RGB 신호를 256칼라로 양자화하였다. 보통의 정지 영상의 경우 대부분의 객체가 중앙에 있을 경우를 고려하여, 영상을 중앙 영역과 배경 영역으로 구분하고, 각각의 영역에서 두 개의 히스토그램을 생성한다. 중앙 영역과 배경 영역의 색상 히스토그램 인터섹션을 이용한 검색 및 물체의 복잡도를 결합한 방법도 제시하였다. 기존의 색상 히스토그램 인터섹션의 방법의 경우보다 물체의 복잡도를 결합한 제한된 방법이 실험결과에 더 좋은 결과를 얻을 수 있다.

  • PDF

The content-based ultrasound image retrieval by wavelet transform and spatial histogram (웨이브릿 변환과 공간 히스토그램을 이용한 초음파 영상 내용기반 검색)

  • 김범수;곽동민;원종운;김남철;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12B
    • /
    • pp.2085-2093
    • /
    • 2000
  • 본 논문에서는 초음파 영상의 대한 내용기반 검색을 위한 초음파 영상의 특징 추출방법과 추출된 특징들을 이용한 검색 방법에 대해 제안한다. 내용기반 초음파 영상 검색을 위한 특징들로 공간영역에서 히스토그램과 웨이브릿 변환후 각 부대역에서 통계적 특성을 추출한다. 웨이브릿 변환 영역에서 추출된 특성은 질의 영상과 유사한 영상의 특성 벡터 거리가 평균 특성 벡터 거리보다 작다는 특성을 가진다. 이러한 특성을 이용하여 일차 검색을 수행하여 그 결과를 공간영역의 히스토그램을 이용한 이차 검색을 위한 후보로 사용함으로써 이차 검색의 대상이 줄어들게 된다. 히스토그램을 이용한 검색은 대상이 많을수록 오류를 범할 가능성이 높아짐으로 검색대상을 줄인다는 것은 매우 중요한 일이다. 또한 히스토그램을 사용함으로써 영상내 의학적 객체의 이동이나 회전에 무관하게 검색을 수행할 수 있다.

  • PDF

Computing Similarities between Segmented Objects in the image for Content-Based Retrieval (내용기반 검색을 위한 분할된 영상객체간 유사도 판별)

  • 유헌우;장동식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.358-360
    • /
    • 2001
  • 본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.

  • PDF