Annual Conference on Human and Language Technology
/
2022.10a
/
pp.268-271
/
2022
단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.249-253
/
2020
상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.67-70
/
2019
상호참조해결은 자연언어 문서 내에서 같은 개체를 나타내는 언급들을 연결하는 문제다. 대명사, 지시 관형사, 축약어, 동음이의어와 같은 언급들의 상호참조를 해결함으로써, 다양한 자연언어 처리 문제의 성능 향상에 기여할 수 있다. 본 논문에서는 현재 영어권 상호참조해결에서 좋은 성능을 내고 있는 BERT 기반 상호참조해결 모델에 한국어 데이터 셋를 적용시키고 표층형을 이용한 규칙을 추가했다. 본 논문의 모델과 기존의 모델들을 실험하여 성능을 비교하였다. 기존의 연구들과는 다르게 적은 특질로 정밀도 73.59%, 재현율 71.1%, CoNLL F1-score 72.31%의 성능을 보였다. 모델들의 결과를 분석하여 BERT 기반의 모델이 다양한 특질을 사용한 기존 딥러닝 모델에 비해 문맥적 요소를 잘 파악하는 것을 확인했다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.543-547
/
2020
자연어 처리에서 기계번역은 가장 많이 사용되고 빠르게 발전하고 있다. 기계번역에 있어서 사람의 평가가 가장 정확하고 중요하지만 많은 시간과 비용이 발생된다. 이에 기계번역을 자동 평가하는 방법들이 많이 제안되어 사용되고 있지만, 한국어 특성을 잘 반영한 자동평가 방법은 연구되지 않고 있다. BLEU와 같은 자동평가 방법을 많이 사용하고 있지만 언어의 특성 차이로 인해 원하는 평가결과를 얻지 못하는 경우가 발생하며, 특히 특허나 논문과 같은 기술문서의 번역에서는 더 많이 발생한다. 이에 본 논문에서는 단어의 정밀도와 어순이 평가에 영향이 있는 RIBES를 가지고 특허 기계 번역에서 영어→한국어로 기계 번역된 결과물의 자동평가에 대해 사람의 평가와 유사한 결과를 얻기 위해 tokenization 과정에서 복합 형태소 분리를 통한 평가방법을 제안하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.596-599
/
2021
목적지향 챗봇은 일상생활의 많은 부분을 자동화하기 위해 우리의 삶에 널리 보급되고 있다. 그러나 목적지향 챗봇은 보통 많은 모듈이 연결된 파이프라인의 형태로 구현되기 때문에 기계학습 초보자 혹은 비전문가가 직접 구현하기에는 어려운 편이다. 때문에 모든 모듈을 직접 구현하기보다는 유료 챗봇 빌더나 오픈소스 프레임워크를 통해 구현된다. 현재 영어는 몇 가지 오픈소스가 존재하지만 한국어는 관련 오픈소스가 전무한 상황이다. 본 논문에서는 이러한 문제를 해결하기 위해 한국어 전용 오픈소스 목적지향 챗봇 프레임워크인 Kochat 을 제안한다. 사용자는 Kochat 을 이용하여 약 20~30 줄의 코드만으로 손쉽게 자신만의 목적지향 챗봇을 학습 및 배포할 수 있다. 모든 소스코드와 문서는 https://github.com/hyunwoongko/kochat에서 확인할 수 있으며, 추가로 논문의 말미에 후속 연구에 대해서도 논의한다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.196-202
/
2023
Large Language Models (LLM)의 출현은 자연어 처리 분야의 연구 패러다임을 전환시켰다. LLM의 핵심적인 성능향상은 지시어 튜닝(instruction-tuning) 기법의 결과로 알려져 있다. 그러나, 현재 대부분의 연구가 영어 중심으로 진행되고 있어, 다양한 언어에 대한 접근이 필요하다. 본 연구는 한국어 지시어(instruction-following) 모델의 개발 및 최적화 방법을 제시한다. 본 연구에서는 한국어 지시어 데이터셋을 활용하여 LLM 모델을 튜닝하며, 다양한 데이터셋 조합의 효과에 대한 성능 분석을 수행한다. 최종 결과로 개발된 한국어 지시어 모델을 오픈소스로 제공하여 한국어 LLM 연구의 발전에 기여하고자 한다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.333-335
/
2023
최근 글을 이해하고 답을 추론하는 연구들이 많이 이루어지고 있으며, 대표적으로 기계 독해 연구가 존재한다. 기계 독해와 관련하여 다양한 데이터셋이 공개되어 있지만, 과거에서부터 현재까지 사람의 영어 능력 평가를 위해 많이 사용되고 있는 토익에 대해서는 공식적으로 공개된 데이터셋도 거의 존재하지 않으며, 이를 위한 연구 또한 활발히 진행되고 있지 않다. 이에 본 연구에서는 현재와 같이 데이터가 부족한 상황에서 기계 독해 모델의 성능을 향상시키기 위한 데이터 증강 기법을 제안하고자 한다. 제안하는 방법은 WordNet을 이용하여 유의어 및 반의어를 기반으로 굉장히 간단하면서도 효율적으로 실제 토익 문제와 유사하게 데이터를 증강하는 것이며, 실험을 통해 해당 방법의 유의미함을 확인하였다. 우리는 본 연구를 통해 토익에 대한 데이터 부족 문제를 해소하고, 사람 수준의 우수한 성능을 얻을 수 있도록 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.64-65
/
2023
이 논문은 한글 프로그래밍 언어 KoBASIC의 설계 및 구현에 관해 기술한다. 현대 사회에서 프로그래밍은 핵심 기술로 자리 잡았으며, 프로그래밍 언어는 이를 실현하기 위한 도구이다. 그러나 대다수의 프로그래밍 언어는 영어로 구성되어 있어, 한글을 주로 사용하는 사용자들에게는 접근이 어려움을 겪고 있다. 이에 본 연구는 한글 사용자들도 쉽게 접근하고 이해할 수 있는 프로그래밍 환경을 제공하기 위한 목적으로, 전통적인 교육용 프로그래밍 언어인 BASIC을 기반으로 한글 프로그래밍 언어 KoBASIC을 새롭게 제안한다.
Su-Beom Jo;Dong-Kyu Lee;Young-Chan Jo;Dongmahn Seo
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.575-576
/
2023
한국 수어는 소리로 말을 배울 수 없어서 사용하는 '보이는 언어'이고 한국수화언어를 줄인 말이다. 한국어나 영어와 같이 독립된 언어로 한국어와는 문법 체계가 다른 대한민국 농인의 고유한 언어이다. 하지만, 한국 사회에서는 수어를 일상어로 사용하는 농인이 수어만으로 다른 사람과 대화하거나 서비스 등을 이용하기에는 쉽지 않은 구조이다. 이에 본 논문에서는 택시라는 상황을 가정해 택시 안에서 학습된 모델이 농인의 수어를 인식하고 택시 기사에게 해당 의미를 전달하는 시스템을 제안한다. 제안 시스템을 통해 택시 기사는 농인(수어사용자)에게 응답할 수 있다. 본 논문에서는 한국수어 번역기 웹서비스를 설계 및 구현하여 실제 환경에서의 활용 가능성을 검증한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.1204-1205
/
2023
본 논문은 소비자의 리뷰 데이터를 기반으로 한 새로운 감성 분석 방법을 제안한다. 긍정, 부정, 중립으로 분류하는 전통적 감성 분석방법은 텍스트에 나타난 감정의 섬세한 차이를 파악하기 어렵다. 이에 본 연구에서는 GPT 모델을 사용하여 텍스트에서 사용자의 감정을 8 가지의 카테고리로 세분화한다. 부정적 정서를 가진 리뷰에서 분노, 혐오, 실망과 같은 구체적인 감정들을 직관적으로 파악할 수 있었고, 감정의 강도까지 파악할 수 있었다. 제안된 방법을 통해 기업은 고객의 요구 사항을 정확하게 인지할 수 있으며, 고객 맞춤형 서비스 개선에 기여할 수 있다는 점이 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.