• Title/Summary/Keyword: 영양염류처리

Search Result 179, Processing Time 0.023 seconds

Feasibility of Aquatic Plants (Eichhornia crassipes and Water dropwort) for Nutrients Removal (수생식물(부레옥잠 및 미나리)을 이용한 영양염류 제거에 관한 연구)

  • Choi, Don-Hyeok;Kang, Ho;Lee, Mi-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2010
  • Feasibility of floating aquatic plants (Eichhornia crassipes and Water dropwort) was investigated in order to control of sewage depending on various initial loading in a lab scale test. In addition, field test was conducted to assess the uptake rate of nutrient by E. crassipes. Lab-scale test applying primary domestic effluent operated at 4 day HRT shows that the highest uptake rates were 1.06 g N/$m^2{\cdot}day$ and 0.39 g P/$m^2{\cdot}day$ in the E. crassipes reactor. BOD removal efficiency in E. crassipes reactor was as high as 80% when the loading value was lower than 185 kg BOD/$ha{\cdot}day$. While 70 ~ 80% removal efficiency of BOD was achieved when the loading value was lower 80 kg BOD/$ha{\cdot}day$ at the W. Dropwort reactor. Experiment results show that E.crassipes has a higher nutrients removal efficiency than W. dropwort under high pollutant loading. Input loadings of TN and TP should not exceed to 10 kg TN/$ha{\cdot}day$ and 2.0 kg TP/$ha{\cdot}day$ respectively to provide a 50% TN and 80% TP removal efficiencies using E. crassipes. The field test demonstrated that an annual yield of E. crassipes mass was estimated as a fresh weight of 30.9 $m^3/ha{\cdot}yr$. E. crassipes grown in field pads absorbed 76.7 kg N/$ha{\cdot}yr$ and 13.4 kg P/$ha{\cdot}yr$ as a dry weight.

A Study on Microorganism Dominant Species in Bench-scale Shipboard STP Using Combined SBR and MBR Process (SBR 및 MBR 복합공정을 적용한 Bench-scale Shipboard STP에서의 미생물 우점종에 관한 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;mansoor, Sana;Kwon, Min-Ji;Jung, Jin-Hee;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 2018
  • International Maritime Organization (IMO) is one of the most effective organizations in evolving international law for the protection and conservation of the marine environment. The IMO, MARPOL(Marine Pollution) 73/78 contains six Annexes that provide an overarching framework for the objectives of the international marine pollution. Annex IV was regulated by 64 th resolution in 2012 to control sea pollution from sewage. In 2014 large-scale wastewater treatment and nutrient removal device was developed with a grant from the Ministry of Oceans and Fisheries. A combined new process of Sequence Batch Reactor (SBR) and Membrane Bioreactor(MBR) was developed to overcome the pollution caused by shipboard sewage. In the present study, shipboard sewage wastewater was treated by mixing and aeration cycle in the newly developed SBR process. Furthermore, during analysis by NGS technique(Macrogen Co., Ltd.), dominant species of bacteria were found in the aeration tank of the Bench-scale wastewater treatment facility. Bacteroidetes and Gammaproteobacteria accounted for 27.1 % of the aerobicbacteria and 16.8 % of the anaerobicbacteria, respectively. Microorganisms play a vital role in shipboard wastewater treatment. A further detailed study is required to understand the precise role of the microorganisms in the wastewater treatment.

Effect of N/P Ratio on the Biomass Productivity and Nutrient Removal in the Wastewater using Botryococcus braunii (하수의 N/P 비가 Botryococcus braunii 증식과 영양염류제거에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.609-613
    • /
    • 2014
  • The aim of this study was effect of N/P ratio on the nutrient removal in the wastewater using microalgae. For this experiment, 1 to 70 various N/P ratio was prepared and used microalgae as Botryococcus braunii in the wastewater. The results of this study were that 1 to 30 of N/P ratio was need for biomass productivity in the wastewater. TN removal was measured 82% for 1 to 30 N/P ratio and 73-78% for 31 to 70 N/P ratio. TP removal in 1 to 20 N/P ratio was determined up to 80%, but over 21 N/P ratio was decreased significantly and was not changed around 22% of TP removal in the 50 to 70 N/P ratio. Therefore, the optimum N/P ratio in the wastewater was 1 to 30 for biomass productivity, TN and TP removal. The correlation ($R^2$) of TP removal and biomass productivity was 0.9126. However, the relationship between TN removal and biomass productivity was not found. The P content in the wastewater was influenced more than that of TN content.

Characteristics of Nutrient Removal with Variation of the Anoxic-Oxic Phase Repetition in Sequencing Batch Reactor Process (SBR공정의 무산소-호기 구간반복에 따른 영양염류 제거 특성)

  • Lee, Jaekune;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • This study was performed to investigate the characteristics of nutrient removal by Sequencing Batch Reactor (SBR) system, which could achieve high removal efficiencies of nitrogen and phosphorus and make it possible convenient management and operation. In this study, dissolved oxygen (DO), chemical oxygen demand (COD), nitrogen, and phosphorus in SBR system were examined by variation of anoxic-oxic phase repetition in order to optimize an operational method. The 1~4 times of anoxic-oxic phases (Run 1~4) were repeated during 1 cycle operation period. As the repetition frequency increased, it was more difficult to maintain DO condition enough for denitrification. The SBR system showed high COD removal efficiency more than 91% regardless of operational condition. About 68% of nitrogen removal rate was obtained in conditions of 2 or 3 times repetition of anoxic phases, in which NOx-N among discharged total nitrogen account for more than 99%. Approximately 40% of phosphorus was eliminated in the conditions of 1~3 times of anoxic phase repetition.

  • PDF

Comparison of Pollutants Removal between the Intermittently Aerated Bioreactor(IABR) and Intermittently Aerated Membrane Bioreactor(IAMBR) (간헐포기공정과 막결합 간헐포기공정의 오염물질 제거특성 비교)

  • Choi, Chang Gyoo;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.119-124
    • /
    • 2006
  • The purpose of this study was the comparison of pollutants removal and the track study of the nitrogen and phosphorus, the estimation of the nitrification and denitrification rate, and the investigation of the nitrogen mass balance between intermittently aerated membrane bioreactor(IAMBR) and intermittently aerated bioreactor(IABR), thus it verified the validity of the membrane submergence. As a result, it had no difference of organic matter removal, however, IAMBR showed better efficiency than IABR in the nutrients. Also, $NO_3{^-}$-N concentration at the anoxic state in the reactor was lower in IAMBR, and the denitrified nitrogen of IAMBR was 40.9%, that of IABR was 10.7%, thus it found out that the denitrification capability of IAMBR was higher than IABR above fourfold. Therefore, it seems resonable to conclude that the membrane helps to improve the removal of pollutants, because of the high MLSS concentration and the available method of intermittent inflow/outflow.

Environmental impact monitoring of indirect wastewater reuse in rice paddy fields (하수처리수의 농업용수 간접재이용에 따른 환경영향)

  • Park, Ji-Hoon;Jeong, Han-Seok;Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.759-759
    • /
    • 2012
  • 하수처리수의 농업용수 재이용 사업은 물 재이용 기본계획의 일환으로 수행되고 있다. 재이용방식은 직접재이용과 간접재이용으로 구분할 수 있으며 2020년까지 56개 하수처리시설에서 총 106,388 천$m^3$/년의 농업용수를 직접재이용할 계획이다. 하지만 대부분의 경우 간접재이용의 형식으로 하수처리수를 농업용수로 이용하고 있는 실정이다. 따라서 본 연구의 목적은 하수처리수의 농업용수 간접재이용에 따른 작물생육, 수질, 그리고 토양환경에 미치는 영향을 평가하는데 있다. 본 연구를 위해 수원시 환경사업소와 오산시 환경사업소 하류 지역을 간접재이용 사례지구로 선정하고, 용인 이동저수지를 관개용수로 하는 청정지역을 대비구로 선정하였다. 각 지구별로 수량 구성요소 및 수확량 특성, 그리고 벼의 영양염류 및 중금속 함량 등의 유해성분을 분석하였으며, 관개수질과 논토양의 성분을 모니터링 하였다. 모니터링 결과를 통해 간접재이용 사례지구의 환경영향을 평가하여 수질기준을 정립하고 간접재이용시스템을 개발하는데 있어 기초적인 자료를 제공할 것이라 사료된다.

  • PDF

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

Shipboard sewage treatment using Membrane Sequence Batch Reactor (MSBR을 이용한 크루즈선 오.폐수 처리 장치)

  • Kim, In-Soo;Lee, Eon-Sung;Oh, Yeom-Jae;Kim, Eog-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.395-396
    • /
    • 2010
  • Lab scale experiment study was carried out for biological process development on cruise. SBR(Sequence Bath Reactor), MBR(Membrane Bioreactor), and MSBR(Membrane Sequence Bath Reactor) system were investigated for practical application on shipboard sewage treatment. From the results it was suggested that MSBR system might be suitable process for cruise in terms of pollutant removal efficiency, maintenance and special environmental conditions of cruise. Based on Res. MEPC.159(55) the MSBR system was qualified for the required regulations.

  • PDF

Characteristics of Nutrient Uptake by Aquatic Plant in Constructed Wetlands for Treating Livestock Wastewater (가축폐수 처리 위한 인공습지에서 수생식물의 영양염류 흡수 특성)

  • Kim, Kyeong-Jin;Kim, Jeong-Seob;Kim, Lee-Hyung;Yang, Keum-Chul
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.121-130
    • /
    • 2012
  • This study is to investigate the removal rates of nutrient in water, the biomass of water plants, and the total amounts of T-N and T-P uptakes by water plants to evaluate the ecological characteristics of the constructed wetland for treatment of livestock wastewater in Yangji-ri, Nonsan-si from June through November 2011. During the experimental period, the monthly plant biomass of constructed wetland in July were the highest as 669.4 kg, while the lowest in November as 200.1 kg. The research showed that the average nitrogen and phosphorus contents in aboveground and underground biomass of Phragmites australis were $21.9{\pm}0.6{\sim}32.1{\pm}1.5mg/g$, $15.1{\pm}5.5{\sim}24.9{\pm}5.7mg/g$, $1.5{\pm}0.3{\sim}2.4{\pm}0.2mg/g$ and $1.6{\pm}0.6{\sim}2.5{\pm}0.6mg/g$, respectively. The maximum amount of T-N and T-P uptake by Phragmites australis were 28.0 kg in July and 2.5 kg in June, respectively, while the minimum amount of T-N and T-P uptake by Phragmites australis were 9.7 kg and 0.7 kg in November, respectively. The removal rates of T-N and T-P in constructed wetland for treating livestock wastewater were 23.0 % and 59.1 %, respectively. The results of this study is expected to deduce the circulation of contaminants and nutrient in the wetland afterwards.

A Study on the Optimum Operating Condition of Acid Fermenter for the BNR Performance Improvement (BNR 효율개선을 위한 산 발효조 최적운전 조건에 관한 연구)

  • Kim, Hyo-Sang;Park, Jong-Woon;Seo, Jung-Won;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.587-595
    • /
    • 2000
  • The most problems of domestic sewage for BNR(Biological Nutrients Removal) process are deficiency of carbon source and low C/N ratio. Primary sludge fermentation is seemed to be one of the best solutions producing biodegradable organic substrates. Soluble organic materials from sludge fermentation are mainly SCFAs(Short-Chain Fatty Acids) with 2~5 carbon atoms. In this research, it was attempted to apply $A_2/O$ process with the side-stream acid fermenter to improve the nutrients removal efficiency. The result showed that proper SCFAs production is about 3.000mg/L with SRT of 4~5 days. SCFAs yield of approximately 0.10~0.16 mg SCFAs(as COD) per mg of primary sludge(as COD) were achieved. The ratio of acetic. propionic. butyric and valerie acid were 1, 0.7, 0.5 and 0.6. Significant improvements of nutrients removal over 70% in BNR process were observed. thus will reduce the demand for chemical dosing to increase nutrients removal efficiency. When the fermentate was entered $A_2/O$ process, the ratio of phosphate release to substrate uptake amounts to $0.34gPO_4-Pg^{-1}COD$.

  • PDF