• Title/Summary/Keyword: 영상 필터링

Search Result 854, Processing Time 0.025 seconds

Fast Extraction of Edge Histogram in DCT Domain based on MPEG-7 (MPEG-7 기반 DCT영역에서의 에지히스토그램 고속 추출 기법)

  • Eom Min-Young;Choe Yoon-Sik;Won Chee-Sun;Nam Jae-Yeal
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.19-26
    • /
    • 2006
  • In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor (EHD) is time consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by the only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.

스마트폰 카메라 및 보안 스티커 검출 방법

  • Kim, Chang-dae;Choi, Seo-hyuk;Ryu, Sung-pil;Kim, Dong-woo;Ahn, Jae-hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.823-826
    • /
    • 2016
  • This paper proposes a method for detecting automatically a smartphone camera in order to put a security stickers and detecting security sickers to recognize whether the removable security sticker or not. The method reduce the time that a person put a security stickers and check the stickers whether the removable stickers at rush hour. It is significantly low to detect rate if the image quality is poor low by LED light flickering phenomenon at the time of the camera detection of the smartphone. Therefor, in this paper, it implement the method that detecting camera to inspect frequently degree after applying the adaptive threshold. Further, in order to recognize whether the removable security sticker or not implement the sticker region detection method using a color filter. The proposed method could increase detecting ratio than earlier methods with LED light flickering phenomenon. In addition, it was also high security sticker detection ratio.

  • PDF

Watermarking of Gray Logo & Color Image based on Human Visual System (인간시각 시스템 기반의 그레이로고 & 컬러 이미지의 워터마킹)

  • NOH Jin Soo;SHIN Kwang Gyu;RHEE Kang Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.73-82
    • /
    • 2005
  • Recently, The wide range of the Internet applications and the related technology developments enabled the ease use of the digital multimedia contents (fixed images, movies, digital audios). However, due to the replay ability which the contents may be easily duplicated and not only the duplicates are capable of providing the same original quality. There are mainly the encipher techniques and the watermarking techniques which are studied and used as solutions for the above problem in order to protect the license holders' rights. To the protection of the IP(Intellectual Property) rights of the owner, digital watermarking is the technique that authenticates the legal copyrighter. This paper proposed the watermarking algorithms to watermark the 256 gray logo image and the color image by applying the wavelet transformation to the color stand-still images. The proposed algorithms conducted the watermark insertion at the LH frequency region among the wavelet transformation regions (LL, LH, HL, HH). The interleaving algorithms which applied in data communication was applied to the watermark. the amount of watermark increased which consequently caused the PSNR to decrease but this might provide the perseverance against the external attacks such as extraction, filtering, and crop.

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

Visual Multi-touch Input Device Using Vision Camera (비젼 카메라를 이용한 멀티 터치 입력 장치)

  • Seo, Hyo-Dong;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.718-723
    • /
    • 2011
  • In this paper, we propose a visual multi-touch air input device using vision cameras. The implemented device provides a barehanded interface which copes with the multi-touch operation. The proposed device is easy to apply to the real-time systems because of its low computational load and is cheaper than the existing methods using glove data or 3-dimensional data because any additional equipment is not required. To do this, first, we propose an image processing algorithm based on the HSV color model and the labeling from obtained images. Also, to improve the accuracy of the recognition of hand gestures, we propose a motion recognition algorithm based on the geometric feature points, the skeleton model, and the Kalman filter. Finally, the experiments show that the proposed device is applicable to remote controllers for video games, smart TVs and any computer applications.

Age and Gender Classification with Small Scale CNN (소규모 합성곱 신경망을 사용한 연령 및 성별 분류)

  • Jamoliddin, Uraimov;Yoo, Jae Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2022
  • Artificial intelligence is getting a crucial part of our lives with its incredible benefits. Machines outperform humans in recognizing objects in images, particularly in classifying people into correct age and gender groups. In this respect, age and gender classification has been one of the hot topics among computer vision researchers in recent decades. Deployment of deep Convolutional Neural Network(: CNN) models achieved state-of-the-art performance. However, the most of CNN based architectures are very complex with several dozens of training parameters so they require much computation time and resources. For this reason, we propose a new CNN-based classification algorithm with significantly fewer training parameters and training time compared to the existing methods. Despite its less complexity, our model shows better accuracy of age and gender classification on the UTKFace dataset.

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

GAP Estimation on Arterial Road via Vehicle Labeling of Drone Image (드론 영상의 차량 레이블링을 통한 간선도로 차간간격(GAP) 산정)

  • Jin, Yu-Jin;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.90-100
    • /
    • 2017
  • The purpose of this study is to detect and label the vehicles using the drone images as a way to overcome the limitation of the existing point and section detection system and vehicle gap estimation on Arterial road. In order to select the appropriate time zone, position, and altitude for the acquisition of the drone image data, the final image data was acquired by shooting under various conditions. The vehicle was detected by applying mixed Gaussian, image binarization and morphology among various image analysis techniques, and the vehicle was labeled by applying Kalman filter. As a result of the labeling rate analysis, it was confirmed that the vehicle labeling rate is 65% by detecting 185 out of 285 vehicles. The gap was calculated by pixel unitization, and the results were verified through comparison and analysis with Daum maps. As a result, the gap error was less than 5m and the mean error was 1.67m with the preceding vehicle and 1.1m with the following vehicle. The gaps estimated in this study can be used as the density of the urban roads and the criteria for judging the service level.

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning (딥러닝 기반 영상처리를 이용한 골재 품질 검사)

  • Kim, Seong Kyu;Choi, Woo Bin;Lee, Jong Se;Lee, Won Gok;Choi, Gun Oh;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.255-266
    • /
    • 2022
  • The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.