• Title/Summary/Keyword: 영상 정합점

Search Result 457, Processing Time 0.026 seconds

Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation (정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘)

  • Ju, Jae-Yong;Kim, Min-Jae;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.37-48
    • /
    • 2012
  • Image registration is a process to establish the spatial correspondence between the images of same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we propose an effective registration method for images acquired by multi-sensors, such as EO (electro-optic) and IR (infrared) sensors. Image registration is achieved by extracting features and finding the correspondence between features in each input images. In the recent research, the multi-sensor image registration method that finds corresponding features by exploiting NMI (Normalized Mutual Information) was proposed. Conventional NMI-based image registration methods assume that the statistical correlation between two images should be global, however images from EO and IR sensors often cannot satisfy this assumption. Therefore the registration performance of conventional method may not be sufficient for some practical applications because of the low accuracy of corresponding feature points. The proposed method improves the accuracy of corresponding feature points by combining the gradient orientation as spatial information along with NMI attributes and provides more accurate and robust registration performance. Representative experimental results prove the effectiveness of the proposed method.

Blunder Detection by Matching Strength Measurement in Digital Photogrammetry (수치 사진측량에 있어서 정합 강도 측정에 의한 불량 정합점 제거에 관한 연구)

  • 정명훈;윤홍식;위광재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • Digital photogrammetry in the implementation of GIS database plays an important role, with the demand for rapid data acquisition and quick updating. Here image matching represents a fundamental task of digital photogrammetry. No image matching algorithm provides a solution as complete as the one given by human vision which is reinforced by knowledge and intelligence capabilities. In this paper, if object space is smooth, we check the global similarity between a possible corresponding point pair and its neighbouring possible corresponding point pairs, detecting blunders; We define matching strength measurement. Besides this, we compute three-dimension coordinates of matching points by bundle adjustment method. Results of the test reveal that the proposed method can eliminate the incorrectly matched pairs efficiently and the accuracy of three-dimension coordinates of matching points come within an allowable error.

  • PDF

3D Depth Reconstruction Technique based on Multi-view Stereo Images (다시점 스테레오 영상 기반 3차원 깊이정보 획득 기술 연구)

  • Park, Soon-Yong;Lee, Min-jae;Pathum, Bandara;Um, Gi-Mun;Cheong, Won-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.62-63
    • /
    • 2019
  • 본 논문에서 개발하고자하는 다시점 스테레오 영상 기반의 3차원 깊이 정보 획득 기술은 스테레오 비전, light field, 가상시점, 방송 콘텐츠, 등 다양한 분야의 기술이 융합된 기술로 연구의 중요성이 매우 높다. 본 논문에서는 SGM 기반의 멀티베이스 라인 스테레오 정합 기술을 개발하고 다시점 스테레오 영상에 적용하여 깊이 정보를 획득하였다. 두 시점 간의 스테레오 정합에 있어서 다방향의 에너지 최소화 기술을 적용하고 시점 간의 정합비용함수를 누적하여 마지막으로 S공간 누적방법으로 최적의 깊이영상을 획득하였다. 기존의 스테레오 정합에 비하여 멀티베이스라인 스테레오 정합의 성능 향상을 확인하고 Middlebury 스테레오 영상을 이용하여 성능을 분석하였다.

  • PDF

Speed-up of Image Matching Using Feature Strength Information (특징 강도 정보를 이용한 영상 정합 속도 향상)

  • Kim, Tae-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.63-69
    • /
    • 2013
  • A feature-based image recognition method, using features of an object, can be performed faster than a template matching technique. Invariant feature-based panoramic image generation, an application of image recognition, requires large amount of time to match features between two images. This paper proposes a speed-up method of feature matching using feature strength information. Our algorithm extracts features in images, computes their feature strength information, and selects strong features points which are used to match the selected features. The strong features can be referred to as meaningful ones than the weak features. In the experiments, it was shown that our method speeded up over 40% of processing time than the technique without using feature strength information.

Image matching methods through key frame extraction (키 프레임 추출을 통한 영상 정합 기법)

  • Kim, Jongho;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.110-113
    • /
    • 2016
  • 본 논문에서는 카메라로 촬영한 동영상에서 키 프레임을 추출하고 특징점을 기반으로 영상을 정합하는 파노라마 영상 생성 기법을 제안한다. 제안한 기법에서는 다양한 동영상의 히스토그램, 에지 등의 정보를 이용해 강인한 키 프레임을 추출하고 추출된 다수의 키 프레임 영상에 실린더 투영 방법과 FAST(Feature from Accelerated Segment Test) 기법을 적용하여 자연스러운 정합 영상을 획득할 수 있다. 정합된 특징점의 오차율을 최소화하기 위해 RANSAC(Random Sample Consensus)을 사용하고 여러 장의 다른 시점 영상을 정합할 때 생길 수 있는 경계선을 제거하고 보정하기 위해 선형가중치 함수도 사용한다. 실험을 통해 제안하는 기법으로 자연스러운 파노라마 영상을 생성할 수 있었다.

  • PDF

The study on the extraction of the minutiae and singular [oint for fingerprint matching (지문인식 정합을 위한 특징점과 특이점 추출 연구)

  • 나호준;김창수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.275-278
    • /
    • 2004
  • 지문 인식 방식은 기존의 영상 처리와는 달리 여러 가지 문제점을 포함하고 있다. 지문에는 기준 좌표축이 존재하지 않으므로 회전되어 채취된 지문에 대한 처리가 어려우며, 신체의 일부로서 유연성을 가지고 있어 채취될 때마다 모양이 달라 보이고, 지문이 손상될 수 있어 저 품질의 지문이 빈번히 발생할 수 있다 본 논문에서는 방향성의 흐름 패턴을 이용한 특이점 추출에 초점이 맞춰져 있으며 추출된 특이점 정보는 현재 구현되어진 특징점 추출 정보와 연계해 정합을 위한 기준점으로 활용한다. 기준점을 축으로 생성되어진 직교좌표는 지문 영상의 회전변위에 대한 영향을 최소화 하여 지문의 정합도를 높여준다.

  • PDF

Automated Image Matching for Satellite Images with Different GSDs through Improved Feature Matching and Robust Estimation (특징점 매칭 개선 및 강인추정을 통한 이종해상도 위성영상 자동영상정합)

  • Ban, Seunghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1257-1271
    • /
    • 2022
  • Recently, many Earth observation optical satellites have been developed, as their demands were increasing. Therefore, a rapid preprocessing of satellites became one of the most important problem for an active utilization of satellite images. Satellite image matching is a technique in which two images are transformed and represented in one specific coordinate system. This technique is used for aligning different bands or correcting of relative positions error between two satellite images. In this paper, we propose an automatic image matching method among satellite images with different ground sampling distances (GSDs). Our method is based on improved feature matching and robust estimation of transformation between satellite images. The proposed method consists of five processes: calculation of overlapping area, improved feature detection, feature matching, robust estimation of transformation, and image resampling. For feature detection, we extract overlapping areas and resample them to equalize their GSDs. For feature matching, we used Oriented FAST and rotated BRIEF (ORB) to improve matching performance. We performed image registration experiments with images KOMPSAT-3A and RapidEye. The performance verification of the proposed method was checked in qualitative and quantitative methods. The reprojection errors of image matching were in the range of 1.277 to 1.608 pixels accuracy with respect to the GSD of RapidEye images. Finally, we confirmed the possibility of satellite image matching with heterogeneous GSDs through the proposed method.

Volume Image Processing for Surface Based MRI-PET Registration (표면 정보 기반 MRI-PET 영상 정합을 위한 볼륨 영상 처리)

  • Jung, Myung-Jin;Choi, Yoo-Joo;Kim, Min-Jeong;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.475-478
    • /
    • 2002
  • 영상 정합이란 영상들을 배열하여 대응되는 특성을 연관시키는 과정으로, 서로 다른 정보를 결합하여 상호 보완적이고 복합적인 새로운 정보를 생성한다는 점에서 유용하다. 본 논문에서는 MRI와 PET 뇌 영상을 표면 정보에 기반하여 정합하기 위한 영상 처리 방법에 대하여 연구하였다. 특히 정합을 위한 특징점 집합을 샘플링하는데 있어서 표면 곡률 정보를 사용한 샘플링 기법을 적용하고, 실 관심 객체의 볼륨 크기에 기반한 바운딩 박스를 생성하여 기하 변환을 수행함으로써 표면정보기반 다중모달리티 영상 정합을 위한 보다 효과적인 영상 처리 결과를 얻도록 하였다.

  • PDF

A Study on Semi-Automatic Registration for Synthesizing Natural Video and Virtual Objects (합성 컨텐츠 저작을 위한 반자동 정합 기술에 관한 연구)

  • Jeong, Se-Yoon;Kim, Kyu-Heon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.661-664
    • /
    • 2002
  • 실사 영상에 가상 객체를 합성하기 위해서는 실사 영상 촬영 당시의 카메라 정보가 필요하다. 본 논문에서는 이러한 카메라 정보를 구하기 위하여 가상현실 분야에서 사용하고 있는 캘리브레이션 프리 정합 (Calibration-Free Registration) 기술을 기반으로 한 반자동 정합 기술을 제안하였다. 가상 현실은 실시간 응용인데 반하여 본 논문에서 제안하는 반자동 정합 기술은 합성 컨텐츠 저작을 위한 오프라인 응용에 적합한 방법으로 캘리브레이션 프리 정합기술의 합성 결과는 사용자의 입력정보와 밀접한 관계가 있다. 캘리브레이션 프리 정합기술은 두가지 사용자 입력을 필요로 한다. 첫번째 입력은 어파인공간 (Affine space)의 기저 (Basis vector)를 위한 특징점 정보이고, 두번째 입력 정보는 가상객체의 영상 투영점 입력이다. 본 논문에서는 이 두가지 사용자 입력중 기저를 위한 특징점 정보입력을 사용자가 쉽게, 정확한 정보를 입력할 수 있게하기 위하여, 사용자가 특징점을 개략적으로 입력하게 하고, 주변 영역에서 코너점 검출을 수행하여 사용자 입력을 수정하여 받아들리는 방법을 제안하였다. 실험결과 제안한 방법을 사용하여 구한 카메라 정보로 만족할 만한 합성 영상을 얻을 수 있었다.

  • PDF

Multi-modality MEdical Image Registration based on Moment Information and Surface Distance (모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.224-238
    • /
    • 2004
  • Multi-modality image registration is a widely used image processing technique to obtain composite information from two different kinds of image sources. This study proposes an image registration method based on moment information and surface distance, which improves the previous surface-based registration method. The proposed method ensures stable registration results with low registration error without being subject to the initial position and direction of the object. In the preprocessing step, the surface points of the object are extracted, and then moment information is computed based on the surface points. Moment information is matched prior to fine registration based on the surface distance, in order to ensure stable registration results even when the initial positions and directions of the objects are very different. Moreover, surface comer sampling algorithm has been used in extracting representative surface points of the image to overcome the limits of the existed random sampling or systematic sampling methods. The proposed method has been applied to brain MRI(Magnetic Resonance Imaging) and PET(Positron Emission Tomography), and its accuracy and stability were verified through registration error ratio and visual inspection of the 2D/3D registration result images.