• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.038 seconds

Fuzzy-based Segmentation Algorithm for Brain Images (퍼지기반의 두뇌영상 영역분할 알고리듬)

  • Lee, Hyo-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.102-107
    • /
    • 2009
  • As technology gets developed, medical equipments are also modernized and leading-edge systems, such as PACS become popular. Many scientists noticed importance of medical image processing technology. Technique of region segmentation is the first step of digital medical image processing. Segmentation technique helps doctors to find out abnormal symptoms early, such as tumors, edema, and necrotic tissue, and helps to diagnoses correctly. Segmentation of white matter, gray matter and CSF of a brain image is very crucial part. However, the segmentation is not easy due to ambiguous boundaries and inhomogeneous physical characteristics. The rate of incorrect segmentation is high because of these difficulties. Fuzzy-based segmentation algorithms are robust to even ambiguous boundaries. In this paper a modified Fuzzy-based segmentation algorithm is proposed to handle the noise of MR scanners. A proposed algorithm requires minimal computations of mean and variance of neighbor pixels to adjust a new neighbor list. With the addition of minimal compuation, the modified FCM(mFCM) lowers the rate of incorrect clustering below 30% approximately compared the traditional FCM.

Improvement of Lipreading Performance Using Gabor Filter for Ship Environment (선박 환경에서 Gabor 여파기를 적용한 입술 읽기 성능향상)

  • Shin, Do-Sung;Lee, Seong-Ro;Kwon, Jang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.598-603
    • /
    • 2010
  • In this paper, we work for Lipreading using visual information for ship environment. Lipreading is studied for using image information including lips of a speaker at the existing speech recognition system. This technique is a compensation method to increase recognition rate decreasing remarkably in noisy circumstances. Proposed way improved the rate of recognition improving methode of preprocessing using the Gabor Filter for Ship Environment. The experiment were carried out under changing of light with time in the ship environment with lip image. For Comparing with recognition, make a compare with between method of lip region of interest (ROI) before Gabor filtering and after Gabor filtering. In the case of using method of lip ROI before Gabor filtering, the result of the experiments applying to the proposed ways recognition resulting in 44% of recognition.

Analysis on Cloud-Originated Errors of MODIS Leaf Area Index and Primary Production Images: Effect of Monsoon Climate in Korea (MODIS 엽면적지수 및 일차생산성 영상의 구름 영향 오차 분석: 우리나라 몬순기후의 영향)

  • Kang, Sin-Kyu
    • The Korean Journal of Ecology
    • /
    • v.28 no.4
    • /
    • pp.215-222
    • /
    • 2005
  • MODIS (Moderate Resolution Image Spectrometer) is a core satellite sensor boarded on Terra and Aqua satellite of NASA Earth Observing System since 1999 and 2001, respectively. MODIS LAI, FPAR, and GPP provide useful means to monitor plant phonology and material cycles in terrestrial ecosystems. In this study, LAI, FPAR, and GPP in Korea were evaluated and errors associated with cloud contamination on MODIS pixels were eliminated for years $2001\sim2003$. Three-year means of cloud-corrected annual GPP were 1836, 1369, and 1460g C $m^{-2}y^{-1}$ for evergreen needleleaf forest, deciduous broadleaf forest, and mixed forest, respectively. The cloud-originated errors were 8.5%, 13.1%, and 8.4% for FPAR, LAI, and GPP, respectively. Summertime errors from June to September explained by 78% of the annual accumulative errors in GPP. This study indicates that cloud-originated errors should be mitigated for practical use of MODIS vegetation products to monitor seasonal and annual changes in plant phonology and vegetation production in Korea.

Wavelet-Based Edge Detection Using Local Histogram Analysis in Images (영상에서 웨이블렛 기반 로컬 히스토그램 분석을 이용한 에지검출)

  • Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.359-371
    • /
    • 2011
  • Edge detection in images is an important step in image segmentation and object recognition as preprocessing for image processing. This paper presents a new edge detection using local histogram analysis based on wavelet transform. In this work, the wavelet transform uses three components (horizontal, vertical and diagonal) to find the magnitude of the gradient vector, instead of the conventional approach in which tw components are used. We compare the magnitude of the gradient vector with the threshold that is obtained from a local histogram analysis to conclude that an edge is present or not. Some experimental results for our edge detector with a Sobel, Canny, Scale Multiplication, and Mallat edge detectors on sample images are given and the performances of these edge detectors are compared in terms of quantitative and qualitative measures. Our detector performs better than the other wavelet-based detectors such as Scale Multiplication and Mallat detectors. Our edge detector also preserves a good performance even if the Sobel and Canny detector are sharply low when the images are highly corrupted.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Stereo Matching For Satellite Images using The Classified Terrain Information (지형식별정보를 이용한 입체위성영상매칭)

  • Bang, Soo-Nam;Cho, Bong-Whan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.93-102
    • /
    • 1996
  • For an atomatic generation of DEM(Digital Elevation Model) by computer, it is a time-consumed work to determine adquate matches from stereo images. Correlation and evenly distributed area-based method is generally used for matching operation. In this paper, we propose a new approach that computes matches efficiantly by changing the size of mask window and search area according to the given terrain information. For image segmentation, at first edge-preserving smoothing filter is used for preprocessing, and then region growing algorithm is applied for the filterd images. The segmented regions are classifed into mountain, plain and water area by using MRF(Markov Random Filed) model. Maching is composed of predicting parallex and fine matching. Predicted parallex determines the location of search area in fine matching stage. The size of search area and mask window is determined by terrain information for each pixel. The execution time of matching is reduced by lessening the size of search area in the case of plain and water. For the experiments, four images which are covered $10km{\times}10km(1024{\times}1024\;pixel)$ of Taejeon-Kumsan in each are studied. The result of this study shows that the computing time of the proposed method using terrain information for matching operation can be reduced from 25% to 35%.

  • PDF

Application of Adaptive Loop Filter for NRT-Based Stereoscopic Video Coding (비실시간 기반 스테레오스코픽 비디오 부호화를 위한 적응루프필터 적용기법)

  • Lee, Byung-Tak;Lee, BongHo;Choi, Haechul;Kim, Jin-Soo;Yun, Kugjin;Cheong, Won-Sik;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2013
  • A stereoscopic 3D video service is able to provide a 3D video service while keeping backward compatibility with the existing 2D video service. In the terrestrial digital television (DTV) system, a stereoscopic video codec is required to have high coding efficiency in order to provide a 3D video service in the same channel capacity. A hybrid codec consisting of MPEG-2 for base video and H.264/AVC or HEVC for 3D auxiliary video is considered. Furthermore, Non-Real-Time (NRT) delivery of stereoscopic video is also considered as a service scenario for 3DTV services to overcome the limited bandwidth. In this paper, we propose a stereoscopic video coding scheme using adaptive loop filter (ALF) which had been considered in HEVC as a pre-/post-filter for enhancing coding efficiency in NRT-based 3DTV services. In order to apply ALF as a post-filter to the reconstructed additional view coded by H.264/AVC, we devise a method in which ALF is adaptively applied based on a structure determined by using macroblock (MB) coding information such as MB mode type and reference index instead of coding unit (CU) structure on which ALF is applied in the HEVC. Experimental results shows that the proposed stereoscopic video coding scheme applying ALF obtains up to 24.9% gain of bit saving.

Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area (디지털 영상을 활용한 도심지 내 GPS 다중경로오차 경감 방법 개발)

  • Yoon, Sung Joo;Kim, Tae Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • To determine the position of receiver, the GPS (Global Positioning System) uses position information of satellites and pseudo ranges based on signals. These are reflected by surrounding structures and multipath errors occur. This paper proposes a method for multipath error reduction using digital images to enhance the accuracy. The goal of the study is to calculate the shielding environment of receiver using image processing and apply it to GPS positioning. The proposed method, firstly, performs a preprocessing to reduce the effect of noise on images. Next, it uses hough transform to detect the outline of building roofs and determines mask angles and permissible azimuth range. Then, it classifies the satellites according to the condition using the image processing results. Finally, base on point positioning, it computes the receiver position by applying a weight model that assigns different weights to the classified satellites. We confirmed that the RMSE (Root Mean Square Error) was reduced by 2.29m in the horizontal direction and by 15.62m in the vertical direction. This paper showed the potential for the hybrid of GPS positioning and image processing technology.

An Embedded FAST Hardware Accelerator for Image Feature Detection (영상 특징 추출을 위한 내장형 FAST 하드웨어 가속기)

  • Kim, Taek-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • Various feature extraction algorithms are widely applied to real-time image processing applications for extracting significant features from images. Feature extraction algorithms are mostly combined with image processing algorithms mostly for image tracking and recognition. Feature extraction function is used to supply feature information to the other image processing algorithms and it is mainly implemented in a preprocessing stage. Nowadays, image processing applications are faced with embedded system implementation for a real-time processing. In order to satisfy this requirement, it is necessary to reduce execution time so as to improve the performance. Reducing the time for executing a feature extraction function dose not only extend the execution time for the other image processing algorithms, but it also helps satisfy a real-time requirement. This paper explains FAST (Feature from Accelerated Segment Test algorithm) of E. Rosten and presents FPGA-based embedded hardware accelerator architecture. The proposed acceleration scheme can be implemented by using approximately 2,217 Flip Flops, 5,034 LUTs, 2,833 Slices, and 18 Block RAMs in the Xilinx Vertex IV FPGA. In the Modelsim - based simulation result, the proposed hardware accelerator takes 3.06 ms to extract 954 features from a image with $640{\times}480$ pixels and this result shows the cost effectiveness of the propose scheme.

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning (딥러닝 기반 영상처리를 이용한 골재 품질 검사)

  • Kim, Seong Kyu;Choi, Woo Bin;Lee, Jong Se;Lee, Won Gok;Choi, Gun Oh;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.255-266
    • /
    • 2022
  • The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.