Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.826-828
/
2004
홍채인식 시스템은 영상획득, 전처리, 특징 추출, 패턴 정합의 단계로 이루어져 있다. 이 중 특징 추출은 특징 차원의 감소뿐만 아니라 분류 정착도의 증가를 위한 필수적인 과정이다. 본 논문에서는 특징을 추출하는데 있어서, 홍채데이타에 웨이블렛 변환의 다해상도 분석 기법을 시도하여 일정 영역을 추출한 후, 그 영역에 유전자 알고리즘(Genetic Algorithm)을 적용하여 가장 분별력 있는 특징들만을 추출 및 사용하는 홍채인식 시스템을 제안한다. 유전자 알고리즘의 선택연산자로는 적응도 비례 방식과 전역 엘리트 방식을 사용하였으며, 적합도 함수로는 Gaussian Kernel을 사용하는 Support Vector Machine(SVM)을 사용하였다. 본 시스템을 통해 나온 최적의 특징집합을 이용한 SVM분류기로 인식률을 알아본 결과 웨이블렛만을 사용했을 때 보다 대략 1.5%정도 더 좋은 인식률을 얻을 수 있었다.
Proceedings of the Korea Multimedia Society Conference
/
2003.05b
/
pp.635-640
/
2003
본 논문에서는 일본 차량 번호판 인식에 적응적 탬플릿 마스킹 방법을 이용하여 번호판 문자, 숫자를 분할하고 패턴벡터기법을 이용하여 인식하는 방법을 제안하였다 주, 야간과 거리에 따른 일본 차량 번호판 영상을 입력받아 전처리 과정을 수행한 후 에지 정보와 명도값 변화의 빈도수를 이용하여 번호판 영역을 검출하였다 검출된 번호판 영역에서 각 문자 및 숫자의 위치정보와 적응적 탬플릿을 이용하여 분할하고 번호판의 지역문자를 무게중심 패턴으로 분류 한 다음 크기와 이동에 무관한 특실을 가지는 패턴 벡터를 적용하여 문자를 인식하였으며, 숫자는 Four Segment Pattern을 이용하여 인식하도록 하였다 본 논문에서 제안한 방법을 실제 일관 차량 번호판 인식에 적용한 결과 98.8% 추출율과 96.6%의 인식율을 나타내었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.329-331
/
2018
지속적인 딥러닝 기반의 영상처리 기술의 발전으로 객체분류나 객체검출 문제에 대해서 뛰어난 성능 보이고 있다. 하지만 객체추적 문제에서는 성능이 좋은 추적기는 실시간 동작이 불가능하고 딥러닝 기반의 객체추적도 단일 객체에만 고려한 기법이 많기 때문에 개선할 필요가 있다. 전처리로 검출된 객체영역과 kalman filter를 통해 예측된 추적영역 간의 embedding feature 비교를 통해 동일인물인지 판단하여 고유 ID를 부여하고 추적한다. 객체끼리 교차하거나 가려지는 상황에서 추적을 실패하게 되는데 이 후에 지속적인 추적을 위해 IoU 비교를 통해 후보 추적기로 남겨두는 과정을 거친다. 실험 결과 실시간 동작여부와 객체끼리 교차하거나 프레임 밖으로 나갔다가 다시 나타나는 경우에도 추적이 가능함을 확인하였다.
스마트 폰의 급속한 보급 확산에 따라 스마트 폰의 각종 센서를 이용한 응용 영역이 넓어지고 있다. 그 가운데 스마트 폰의 카메라를 이용한 인식 기술은 비전 기반 증강현실 시스템 구현의 핵심적인 부분으로 그 중요성이 부각되고 있다. 본 논문에서는 스마트 폰의 카메라를 사용하여 JNI 기술을 이용한 안드로이드 기반의 인쇄매체의 문자 검출 및 인식 시스템을 설계 구현하였다. 전체 시스템은 영상의 전처리 과정을 통한 문자 영역의 검출과 인식 알고리즘 연산 후 기본 데이터와의 비교를 통한 문자인식 과정으로 구성되어 있다. 본 구성은 PC기반의 일반적 문자 인식과 동일하다. 구현결과는 1GHz의 CPU를 가지는 스마트 폰의 제한된 하드웨어 자원에서도 플랫폼 최적화를 통한 실시간 인식의 가능성을 보여주었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.72-74
/
2021
The deep learning process currently utilized in various fields consists of data preparation, data preprocessing, model generation, model learning, and model evaluation. In the process of model learning, the loss function compares the value of the model with the actual value and outputs the difference. In this paper, we analyze various loss functions used in the deep learning model for biomarker extraction, which measure the degree of loss of neural network output values, and try to find the best loss function through experiments.
이 논문에서는 다매체를 사용하여 데이터를 수집한 후 기계학습을 통해 분석하고 주어진 상황에 대응하기 위한 시스템의 개발을 기술한다. 개발 시스템은 센서데이터 수집부, 상황인지 및 상황대응부로 이루어지며, 아두이노와 라즈베리파이를 사용하여 구성한다. 구성된 시스템은 영상 카메라 및 온습도을 포함한 다수의 센서를 사용하여 환경정보를 수집한 후 수집자료를 전처리하고 주어진 상황을 인지하여 상황에 가장 적절하다고 판단되는 대응을 안내하도록 기능을 구성하였다. 상황인지를 위해서는 기계학습 알고리즘으로 의사결정트리를 사용하였으며 100%의 상황인지 정확률을 갖는다.
의료 인공지능은 특정 진단에서 높은 정확도를 보이지만 모델의 신뢰성 문제로 인해 활발하게 쓰이지 못하고 있다. 이에 따라 인공지능 모델의 진단에 대한 원인 설명의 필요성이 대두되었고 설명가능한 의료 인공지능에 관한 연구가 활발히 진행되고 있다. 하지만 MRI 등 의료 영상 인공지능 분야에서 주로 진행되고 있으며, 이미지 형태가 아닌 전자의무기록 데이터 (Electronic Health Record, EHR) 를 기반으로 한 모델의 설명가능성 연구는 EHR 데이터 자체의 복잡성 때문에 활발하게 진행 되지 않고 있다. 본 논문에서는 전자의무기록 데이터인 MIMIC-III (Medical Information Mart for Intensive Care) 를 전처리 및 그래프로 표현하고, GCT (Graph Convolutional Transformer) 모델을 학습시켰다. 학습 후, 어텐션 흐름 그래프를 시각화해서 모델의 예측에 대한 직관적인 설명을 제공한다.
Juhyeong Lee;MinA Lee;YongHyun Kwon;Byeongseok Ryu;YoungGyun Kim
Annual Conference of KIPS
/
2023.05a
/
pp.292-294
/
2023
본 논문에서는 국내 사망 원인 1위 질환인 암 중 가장 큰 비중을 차지하는 폐암의 암 오진율 감소 및 정밀 진단을 위해 폐암세포를 검출 및 계수 할 수 있는 시스템을 구현하였다. 사용자가 관심 영역을 지정하면 H&E 염색 방식을 사용한 폐암세포 전처리 과정을 거쳐 검출 및 계수 할 수 있다. 본 시스템을 통해 병리학자가 단 시간에 폐암세포 검출 및 계수하여 객관적 진단 도구로 활용할 수 있으며, 디지털 기술과 융합하여 정밀 의료에 크게 기여할 수 있을 것으로 기대된다.
Kim, Eunsung;Jung, Im Young;Choi, Hyung Jun;Yeom, Heon-Young
Annual Conference of KIPS
/
2007.11a
/
pp.690-692
/
2007
기존의 2 차원 이미지를 통한 세포 분석은 단지 세포의 단면만을 볼 수 있기 때문에 정확한 구조를 파악하기 힘들다. 본 논문에서는 그리드 기술을 이용하여 2 차원 이미지들을 세포 구조에 대한 더욱 정확한 이해 및 연구 능률의 향상을 도모할 수 있는 3 차원 이미지로 재구성하는 시스템을 개발하였다. 이 시스템은 고성능 이미지 처리를 위해서 계산 그리드를 이용하며, 화질 개선을 위한 전처리 기술, 자동 영상 정렬 기술, 효과적인 삼차원 재구성 기술과 같은 다양한 이미지 처리 알고리즘 및 preStageIn, BgUpload, delegated preprocessing 등과 같은 데이터 전송 최적화 기술 등을 제공한다. 또한, 다양한 이미지 뷰어 기능 및 DirectX 를 이용한 3 차원 렌더링 기능을 제공한다.
웨어러블 디바이스 착용자의 PPG 신호 데이터로 위협 상황을 감지하는 알고리즘을 개발한다. 본 논문에서는 외부 환경에 예민한 PPG 센서에 최적화된 전처리 알고리즘을 제안하고 긍정 및 부정 영상 시청 실험을 통해 얻은 PPG 신호 데이터를 이용하여 위험 상황과 안전한 상황을 구분하는 정확도 96.87%의 1D-CNN 모델을 개발한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.