Object Tracking Technique with Metric Learning and IoU Comparison

Metric learning과 IoU 비교를 통한 객체추적 기법

  • Published : 2018.06.20

Abstract

지속적인 딥러닝 기반의 영상처리 기술의 발전으로 객체분류나 객체검출 문제에 대해서 뛰어난 성능 보이고 있다. 하지만 객체추적 문제에서는 성능이 좋은 추적기는 실시간 동작이 불가능하고 딥러닝 기반의 객체추적도 단일 객체에만 고려한 기법이 많기 때문에 개선할 필요가 있다. 전처리로 검출된 객체영역과 kalman filter를 통해 예측된 추적영역 간의 embedding feature 비교를 통해 동일인물인지 판단하여 고유 ID를 부여하고 추적한다. 객체끼리 교차하거나 가려지는 상황에서 추적을 실패하게 되는데 이 후에 지속적인 추적을 위해 IoU 비교를 통해 후보 추적기로 남겨두는 과정을 거친다. 실험 결과 실시간 동작여부와 객체끼리 교차하거나 프레임 밖으로 나갔다가 다시 나타나는 경우에도 추적이 가능함을 확인하였다.

Keywords