서로 다른 색상의 조명환경에서 촬영된 영상으로부터 동일 객체를 자동으로 검출하기 위하여 객체의 색상 비교가 요구된다. 본 논문에서는 서로 다른 조명 영상들에서 비교 대상 객체들의 색상을 비교 분석하기 위하여, 조명 차이 요소를 제거하고, 입력영상을 목표 조명영상으로 변환하기 위한 색 보정 기법을 제안한다. 제안 색상 보정 기법은 촬영전에 색상 팔렛트를 이용하여 조명색상 정보를 분석하여 각 조명간 RGB 색상 요소별 차이를 전처리 단계에서 계산한다. 각 조명환경에서 촬영한 영상에 대해, 미리 계산된 조명간 차이값을 입력되는 각 영상화소값에 반영함으로써 영상의 색상을 보정한다. 실험에서, 서로 다른 색상의 조명 조건에서 촬영된 두 영상에 대하여 하나의 영상을 기준 영상으로 선정하고, 다른 하나의 영상에 제안 보정처리를 수행한다. 보정 전후 영상과 기준 영상과의 가시적인 비교 방법과 히스토그램 비교에 의하여 제안 보정 기법의 성능을 평가한다.
A neural network is utilized for preprocessing of de-noizing in electrocardiogram signals, retinal images, seismic waves, etc. However, the de-noizing process could provoke increase of computational time and distortion of the original signals. In this study, we investigated a neural network architecture to analyze measurement data without additional de-noizing process. From the dynamical behaviors of DNA in aqueous solution, our neural network model aimed to predict the mole fraction of each DNA in the solution. By adding white noise to the dynamics data of DNA artificially, we investigated the effect of the noise to neural network's predictions. As a result, our model was able to predict the DNA mole fraction with an error of O(0.01) when signal-to-noise ratio was O(1). This work can be applied as a efficient artificial intelligence methodology for analyzing DNA related to genetic disease or cancer cells which would be sensitive to background measuring noise.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.132-137
/
2005
재해분야에 인공위성의 활용도가 높아짐에 따라 본 연구에서는 Landsat 영상과 RADARSAT 영상을 이용하여 안성천유역을 대상으로 침수지역을 추출하고자 하였다. Landsat 영상은 침수 전과 후의 영상을 각각 선정하였으며 RADARSAT 영상은 침수 중과 침수 후 의 영상을 선정하였다. 각 영상에 대하여 전처리와 기하보정을 걸친 후 침수지역을 파악하기 위한 방법으로 토지피복분류 방법을 사용하였고, 그 중 Landsat 영상은 분광반사계를 이용하여 감독분류를 실시하였고, RADARSAT 영상은 무감독 분류를 실시하여 침수 지역을 확인할 수 있었다.
현재 사회 전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 연구에서는 내용기반 영상검색을 위한 다중 영상특징 추출방법과 특징결합 방법을 제시한다. 우선 전처리 및 캐니 에지 검출법으로 질의영상내 물체영역의 에지를 검출한다. 그 다음에 제안한 볼록 다각형 알고리즘을 통해 분할된 물체영상을 획득한다. 분할된 물체영상은 HSV 공간으로 변환되고 히스토그램 인터섹션 방법으로 유사도가 측정된다. 또한 분할된 물체영상은 웨블릿 변환 영상으로도 변환된다. 이러한 변환후 웨블릿 부밴드의 LL 영역에 제안하는 거리 밴드 평균 오토코릴로그램 알고리즘을 적용하여 오토코릴로그램 유사도를 측정한다. 그리고 GLCM을 이용한 엔트로피와 콘트라스트 유사도는 LH, HL 영역에서 측정된다. 전 과정을 통해 얻은 4개의 다중 영상특징은 수정된 보다 카운트 방법으로 결합되고 최종 유사도가 결정된다. 실험결과 제안한 다중 영상특징을 사용한 검색 방법이 단일 영상특징을 사용하는 검색 방법보다 소환성과 정확성의 성능에 있어 우수함을 보였다. 그리고 NMRR 측정에서도 개선된 성능을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.165-168
/
1998
얼굴을 인식하는 연구 분야는 얼굴 영상을 분석하는 과정을 거친다. 또한, 얼굴 영상 분석은 얼굴 영상을 이용하는 모든 분야의 연구에 필요한 전처리 과정이라고 할 수 있다. 그러나 얼굴 영상을 분석하는 일은 많은 비용이 든다. 본 연구에서는 이러한 분석과정을 거치지 않고 얼굴 영상을 변형한다. 입력되어지는 얼굴 영상에 나타나는 얼굴 표정을 파악하기 위하여 입력되는 데이터의 변화를 가장 잘 표현해 주는 것으로 널리 알려져 있는 고유 벡터를 이용하며, 기존의 영상을 변형한새로운 영상을 생성하기 위해서 가장 직관적으로 사용할 수 있지만, 광류 영상을 구하는 과정이 시간적으로 많은 비용을 요구하기 때문에, 본 연구에서는 일반 영상에 대한 고유 벡터와 광류 영상에 대한 교유 벡터를 이용하여 고유 벡터 공간 상의 가중치 벡터를 전달하는 방법으로 영상을 처리할 때마다 수행하여야 하는 광류 계산과정을 제거하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.300-304
/
2020
본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.
Journal of Korea Society of Industrial Information Systems
/
v.9
no.2
/
pp.59-64
/
2004
Most features of nature and phenomena we encounter in many branches of science are inherently very irregular and have fractal aspects. Thus the analysis of them with the traditional methods such as a differential operator may result in their ill-posed problems. To settle these problems, one may use several type of mean filters which smooth the input signal. However when a given function or data are complex in their nature, there may be loss of some original information during these process. In this paper, we utilized the tangent plane method instead of mean filters for the purpose of less loss of information and more smoothness. After then we attempt to take more accurate edges for the irregular image on the basis of the Otzu threshold. Finally we introduce the effective edge extracting method which use the fractal dimension representing the complexity of the given image.
Fingerprint recognition technology is used in many biometrics field accordingly essential feature of fingerprint image and the study is progressing. However development is not perfect in performance of the fingerprint recognition and application of the usual life. In the paper, we study various necessity of preprocessing according to algorithm and circumstances of authentication system in automatic information machine. We prove that system circumstance and optation of fingerprints image effectively is the important factor by using optical fingerprint input device and scanning the fingerprint in ID card. And then we present correct and fast computation method for improving image and feature extraction of fingerprint. Also we study effective algorithm implementation of total system.
In order to widely use volume rendering technology in practical fields, a user should be able to control the classification parameter interactively and extract a meaningful information easily from the 3D data as fast as it can be. Previous work on an accelerating volume rendering reconstructs an isotropic volume from an anisotropic one and classifies in pre-processing time and then renders the classified volume rapidly in run time. But, this traditional step may result in long pre-processing time and no real-time feedback. In this paper, we present an efficient classification and rendering method that allows a user to set the opacity transfer function interactively at rendering time on a personal computer without special-purpose hardware.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2006.11a
/
pp.59-62
/
2006
본 논문에서는 OpenGL Rendering을 이용한 모델기반 3D 다시점 영상의 객체 구현을 위한 구성과 각 모듈에 적용되는 알고리즘에 대해 중점적으로 연구하였다. 한 장의 텍스쳐 이미지와 깊이 맵(Depth Map)을 가지고 다시점 객체를 생성하기 위해, 먼저 깊이 정보의 전처리 과정을 거친다. 전처리 된 깊이 정보는 OpenGL상에서의 일정 간격의 꼭지점(Vertex) 정보로 샘플링 된다. 샘플링 된 꼭지점 정보는 깊이 정보를 z값으로 가지는 3차원 공간 좌표상의 점이다. 이 꼭지점 정보를 기반으로 텍스쳐 맵핑 (texture mapping)을 위한 폴리곤(polygon)을 구성하기 위해 딜루이니 삼각화(Delaunay Triangulations) 알고리즘이 적용되었다. 이렇게 구성된 폴리곤 위에 텍스쳐 이미지를 맵핑하여 OpenGL의 좌표 연산을 통해 시점을 자유롭게 조정할 수 있는 객체를 만들었다. 제한된 하나의 이미지와 깊이 정보만을 가지고 좀 더 넓은 범위의 시점을 가지는 다시점 객체를 생성하기 위해, 새로운 꼭지점을 생성하여 폴리곤을 확장시켜 기존보다 더 넓은 시점을 확보할 수 있었다. 또한 렌더링된 모델의 경계 영역 부분의 깊이정보 평활화를 통해 시각적인 개선을 이룰 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.