본 논문은 bi-modality와 근접성(adjacency)을 고려하여 멤버쉽 값(membership value)을 결정하는 퍼지 임계화(fuzzy thresholding)에 기반한 FLIR(forward-looking infrared) 영상에서의 표적 추출 방법을 제안한다. Bi-modality는 국부 영역의 화소값 분포를 이용한 것으로 화소가 표적 부분으로 분류되는 정도를 나타내고, Adjacency는 각 화소가 표적 영역으로 부터 얼마나 떨어져 있는지를 나타내는 척도이다. 이 두 가지 척도를 이용하여 멤버쉽 값을 계산한 후, 퍼지 임계화 방법으로 표적을 추출한다. 제안한 표적 추출 방법의 성능을 평가하기 위해 다양한 실제 전차의 FLIR 영상을 이용하여 기존의 분할 방법과 비교한다. 실험을 통해 제안한 알고리즘이 우수한 분할 성능을 보임을 증명한다.
본 연구는 이미지 디노이징을 위한 1-패스 공간 적응적 웨이블릿 임계화를 제안하였다. 웨이블릿 임계화를 이용한 디노이징은 최상의 기저함수와 임계치를 구하는 연구에 집중되어왔으나 이미지의 통계적 특성의 변화에 효과적으로 적용되는 방법은 아직 충분하지 않은 상태이다. 제안된 방법에 Overcomplete wavelet expansion을 사용하여 노이즈의 제거에 좋은 결과를 나타내었다. 그리고 실험 결과는 Wiener 필터링 방법과 Level dependent 임계치, 2-패스 공간적응적 웨이블릿 임계화 방법보다 좋은 결과를 나타내었다.
본 논문에서는 컨테이너 식별자 영상 인식 시스템의 전처리 과정에 다중 임계 영역을 사용하는 방안을 제안한다. 컨테이너 영상의 특징을 이용해서, 설정된 여러 개의 후보 임계 영역들을 사용해서 영상을 각각 이진화하고, 각각의 이진 영상에 대해서 라벨링, 패널링 등을 함께 진행하면서 최종적으로 최적의 문자 영역을 추출한다. 또한 유사한 방법을 적용해서 잡음을 제거하고 개별 문자를 분리한다. 영상 162장을 사용한 실험에서 문자 영역 분리와 개별 문자 분리의 성공률이 각각 99.04%와 98.09%가 되었다.
이진 영상은 모양, 위치, 수, 정보 등 원본 영상의 정보를 최대한 보존하면서 인식이나 분할에 적합하게 변화된 단순한 흑백영상이다. 영상의 이진화 처리는 영상처리 분야에서 문자인식, 영상분석 등과 같은 다양한 응용에서 배경과 물체를 구분하는 영상분할을 위한 일반적인 도구로 사용된다. 퍼지 이진화는 영상에 대한 임계값을 원본 영상의 가장 밝은 픽셀과 가장 어두운 픽셀의 평균값으로 설정하고 이를 삼각형 타입의 소속 함수에 적용하여 영상을 이진화 한다. 그러나 퍼지 이진화는 영상의 배경과 물체의 밝기 차이가 큰 경우에는 이진화가 효과적이지만 차이가 크지 않은 경우에는 소속 함수 구간을 효율적으로 설정할 수 없어 이진화를 효과적으로 할 수 없다. 따라서 본 논문에서는 이러한 문제점을 개선하기 위해 ART2 알고리즘을 적용하여 각 클러스터의 중심 값을 구한다. 그리고 각 클러스터의 중심 값에 해당하는 명암도를 이용하여 평균값을 구한 후, 이 평균값을 퍼지 이진화 방법에서 소속 함수 구간의 중간값으로 설정하여 영상을 이진화 한다. 다양한 영상에 제안된 방법과 기존의 퍼지 이진화 방법을 적용한 결과, 기존의 퍼지 이진화 방법보다 정보 손실이 적은 것을 확인하였다.
지문인식을 위한 중요한 전처리 과정중의 하나는 영상의 이진화 과정이다 이진화 과정은 그레이 레벨의 영상( gray scale input image)을 받아들여 이진의 영상(binary image)으로 만드는 것이다. 이진화 과정에 있어서의 어려운 점은 적절한 임계값(threshold value)을 찾는 것이다. 된 논문에서는 국부적인 융선과 골의 밝기의 특성에 따라 적절한 임계값을 선택하는 적응 이진화 방법을 제시한다. 실험을 통하여 게시된 방법은 기존의 방법과 비교하여 족은 성능을 보여주고 있음을 입증하였다.
적외선 탐색 및 추적 시스템에서 원거리에 표적이 존재할 경우 표적의 크기가 매우 작고, 해무와 같은 클러터와 다양한 센서 잡음으로 인해 표적의 검출이 매우 어렵다. 특히 표적의 화소 값과 유사한 잡음이나 클러터가 존재하는 경우 일반적인 임계화 기법을 적용하는 경우 표적의 오검출 위험이 매우 높다. 이러한 이유로 본 논문에서는 영상의 밝기 정보와 표적에 대한 사전 정보를 이용하여 최적의 표적 검출 결과를 도출하기 위한 적응적 임계화 기법을 제안한다. 소형 표적을 강조하기 위하여 인간 시각 시스템을 반영한 CSF(Contrast Sensitivity Function)를 적용하고, 표적이 강조된 영상에서 영상의 밝기 정보와 거리 정보를 이용하여 표적을 검출한다. 다양한 환경 조건에서 획득된 적외선 영상에 대한 실험 결과들은 제안 알고리즘의 견실한 성능을 보여준다.
본 논문에서는 프레임 블록화와 Otsu 임계값 설정 방법을 이용한 샷 전환 탐지 알고리즘을 제안한다. 제안 방법은 연속된 두 프레임을 일정 크기의 영역으로 분할하여 두 프레임 간 대응되는 영역의 히스토그램 차이를 이용해 샷 전환을 탐지한다. 또한 각 영상마다 Otsu 임계값 설정 방법을 이용하여 자동으로 임계값을 설정한다. 제안 방법의 실험은 영화, 드라마, 애니메이션 등 다양한 영상에 대해 테스트되었으며, 기 연구된 샷 전환 탐지 알고리즘과 비교 시 우수한 탐지율을 보였다.
본 논문에서는 차량 영상으로부터 동적인 임계화 방법과 개선된 성능의 학습 알고리즘에 의한 신경망을 이용하여 차량 번호판 인식방법을 제안하였다. 제안된 방법에서 번호판 영역은 차량 영상의 구조적 속성을 이용한 동적인 임계화 방법과 밀집비율을 함께 고려하여 추출하였다. 추출된 영역으로부터의 개별문자와 숫자는 윤곽선 추적 알고리즘을 이용하여 각각 추출하였으며, 그들의 인식을 위해서 수정된 ART1과 지도 학습 방법을 결합한 개선된 성능의 신경망을 이용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 차량 번호판들을 대상으로 실험한 결과, 기존의 그레이 명암이나 RGB 컬러 정보들을 이용하는 방법보다 추출률이 개선되었으며, 인식성능도 기존의 오류 역전파 알고리즘의 신경망보다 우수한 성능이 있음을 확인하였다.
영상의 이진화는 영상을 물체와 배경으로 구분하는 전처리 과정으로써, 처리해야 할 대상이 되는 물체를 규정하기 위한 매우 중요한 처리과정이며 크게 전역 임계 값 설정 방법과 지 역 임계값 설정 방법으로 분류할 수 있다. 본 논문에서는 전역적 이진화 방법의 장점과지역적 이진화 방법의 장점을 결합하여 문자 영역에 대한 효율적이고 적응적인 이진화 방법을 제안한다. 한글 명도 영상을 대상으로 실험한 결과 지역적 이진화 알고리즘보다 훨씬 빠른 속도로 더 좋은 품질의 문자 이진화가 가능함을 확인할 수 있었다.
본 논문은 저해상도와 많은 노이즈를 갖는 일반 CCTV의 입력 영상에서 실시간으로 움직이는 물체를 검출하고 그 물체의 움직임을 추적하는 방법을 제안 한다. 본 논문은 CCTV영상으로부터의 입력 영상을 순차를 갖는 명암도 영상으로 실시간 변환 하여 진행 한다. 움직이는 물체의 추출은 첫째, 획득한 영상의 그레이 영상을 포스터라이징을 이용하여 명암 분포를 축소하고 차영상을 통해 윤곽을 추출한다. 둘째, 본 논문이 제안하는 영역 단위 이진화를 통해 이진화와 잡음의 제거를 동시에 수행한다. 셋째, 손실된 정보의 보정을 위해 이진 영상의 팽창을 수행한다. 넷째, 이진 영상의 가로/세로 명암 밀도 분포를 통해 움직이는 물체 영역을 검출한다. 검출된 물체의 추적은 현 재 프레임의 물체 영역과 이전 프레임의 물체 영역의 중심을 계산한 후, 두 중심의 거리 차를 계산한다. 계산된 거리가 임계값보다 작을 경우 같은 물체로 인식하고 계속 추적하며, 임계값 이상의 값일 경우 새로운 물체로 인식한다. 추적된 이동물체의 중심점이 화면의 중앙 부분에 있지 않을 경우, 이동물체의 중심으로 카메라의 방향을 조정한다. 실험결과, 제안한 방법으로 저해상도와 많은 노이즈를 갖는 일반 CCTV 의 입력 영상에서도 실시간으로 움직이는 물체를 검출하고, 그 물체의 움직임을 추적 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.