• 제목/요약/키워드: 영상 임계화

검색결과 243건 처리시간 0.022초

국부적 특성의 Bi-modality와 Chamfer 거리를 이용한 FLIR 영상의 표적 추출 (Target extraction in FLIR image using Bi-modality of local characteristic and Chamfer distance)

  • 이희열;김세윤;김종환;곽동민;최병재;주영복;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.304-310
    • /
    • 2009
  • 본 논문은 bi-modality와 근접성(adjacency)을 고려하여 멤버쉽 값(membership value)을 결정하는 퍼지 임계화(fuzzy thresholding)에 기반한 FLIR(forward-looking infrared) 영상에서의 표적 추출 방법을 제안한다. Bi-modality는 국부 영역의 화소값 분포를 이용한 것으로 화소가 표적 부분으로 분류되는 정도를 나타내고, Adjacency는 각 화소가 표적 영역으로 부터 얼마나 떨어져 있는지를 나타내는 척도이다. 이 두 가지 척도를 이용하여 멤버쉽 값을 계산한 후, 퍼지 임계화 방법으로 표적을 추출한다. 제안한 표적 추출 방법의 성능을 평가하기 위해 다양한 실제 전차의 FLIR 영상을 이용하여 기존의 분할 방법과 비교한다. 실험을 통해 제안한 알고리즘이 우수한 분할 성능을 보임을 증명한다.

1-패스 공간 적응적 웨이블릿 임계화를 사용한 영상의 노이즈제거 (1-PASS SPATIALLY ADAPTIVE WAVELET THRESHOLDING FOR IMAGE DENOSING)

  • 백승수
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.7-12
    • /
    • 2003
  • 본 연구는 이미지 디노이징을 위한 1-패스 공간 적응적 웨이블릿 임계화를 제안하였다. 웨이블릿 임계화를 이용한 디노이징은 최상의 기저함수와 임계치를 구하는 연구에 집중되어왔으나 이미지의 통계적 특성의 변화에 효과적으로 적용되는 방법은 아직 충분하지 않은 상태이다. 제안된 방법에 Overcomplete wavelet expansion을 사용하여 노이즈의 제거에 좋은 결과를 나타내었다. 그리고 실험 결과는 Wiener 필터링 방법과 Level dependent 임계치, 2-패스 공간적응적 웨이블릿 임계화 방법보다 좋은 결과를 나타내었다.

  • PDF

컨테이너 식별자 영상 인식 시스템에서 다중 임계영역을 이용한 영상 전처리 (Image Preprocessing in Container Identifier Recognition System Using Multiple Threshold Regions)

  • 우종호
    • 한국멀티미디어학회논문지
    • /
    • 제16권5호
    • /
    • pp.549-557
    • /
    • 2013
  • 본 논문에서는 컨테이너 식별자 영상 인식 시스템의 전처리 과정에 다중 임계 영역을 사용하는 방안을 제안한다. 컨테이너 영상의 특징을 이용해서, 설정된 여러 개의 후보 임계 영역들을 사용해서 영상을 각각 이진화하고, 각각의 이진 영상에 대해서 라벨링, 패널링 등을 함께 진행하면서 최종적으로 최적의 문자 영역을 추출한다. 또한 유사한 방법을 적용해서 잡음을 제거하고 개별 문자를 분리한다. 영상 162장을 사용한 실험에서 문자 영역 분리와 개별 문자 분리의 성공률이 각각 99.04%와 98.09%가 되었다.

정보손실이 적은 ART2 기반 퍼지 이진화 방법 (ART2 Based Fuzzy Binarization Method with Low Information Loss)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1269-1274
    • /
    • 2014
  • 이진 영상은 모양, 위치, 수, 정보 등 원본 영상의 정보를 최대한 보존하면서 인식이나 분할에 적합하게 변화된 단순한 흑백영상이다. 영상의 이진화 처리는 영상처리 분야에서 문자인식, 영상분석 등과 같은 다양한 응용에서 배경과 물체를 구분하는 영상분할을 위한 일반적인 도구로 사용된다. 퍼지 이진화는 영상에 대한 임계값을 원본 영상의 가장 밝은 픽셀과 가장 어두운 픽셀의 평균값으로 설정하고 이를 삼각형 타입의 소속 함수에 적용하여 영상을 이진화 한다. 그러나 퍼지 이진화는 영상의 배경과 물체의 밝기 차이가 큰 경우에는 이진화가 효과적이지만 차이가 크지 않은 경우에는 소속 함수 구간을 효율적으로 설정할 수 없어 이진화를 효과적으로 할 수 없다. 따라서 본 논문에서는 이러한 문제점을 개선하기 위해 ART2 알고리즘을 적용하여 각 클러스터의 중심 값을 구한다. 그리고 각 클러스터의 중심 값에 해당하는 명암도를 이용하여 평균값을 구한 후, 이 평균값을 퍼지 이진화 방법에서 소속 함수 구간의 중간값으로 설정하여 영상을 이진화 한다. 다양한 영상에 제안된 방법과 기존의 퍼지 이진화 방법을 적용한 결과, 기존의 퍼지 이진화 방법보다 정보 손실이 적은 것을 확인하였다.

적응 이진화를 이용한 지문인식 전처리에 관한 연구 (A Study on the Fingerprint Recognition Preprocessing using adaptive binary method)

  • 조성원;김재민
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.227-230
    • /
    • 2002
  • 지문인식을 위한 중요한 전처리 과정중의 하나는 영상의 이진화 과정이다 이진화 과정은 그레이 레벨의 영상( gray scale input image)을 받아들여 이진의 영상(binary image)으로 만드는 것이다. 이진화 과정에 있어서의 어려운 점은 적절한 임계값(threshold value)을 찾는 것이다. 된 논문에서는 국부적인 융선과 골의 밝기의 특성에 따라 적절한 임계값을 선택하는 적응 이진화 방법을 제시한다. 실험을 통하여 게시된 방법은 기존의 방법과 비교하여 족은 성능을 보여주고 있음을 입증하였다.

밝기 차, 유사성, 근접성을 이용한 적응적 표적 검출 알고리즘 (Adaptive Target Detection Algorithm Using Gray Difference, Similarity and Adjacency)

  • 이은영;구은혜;유현정;박길흠
    • 한국통신학회논문지
    • /
    • 제38B권9호
    • /
    • pp.736-743
    • /
    • 2013
  • 적외선 탐색 및 추적 시스템에서 원거리에 표적이 존재할 경우 표적의 크기가 매우 작고, 해무와 같은 클러터와 다양한 센서 잡음으로 인해 표적의 검출이 매우 어렵다. 특히 표적의 화소 값과 유사한 잡음이나 클러터가 존재하는 경우 일반적인 임계화 기법을 적용하는 경우 표적의 오검출 위험이 매우 높다. 이러한 이유로 본 논문에서는 영상의 밝기 정보와 표적에 대한 사전 정보를 이용하여 최적의 표적 검출 결과를 도출하기 위한 적응적 임계화 기법을 제안한다. 소형 표적을 강조하기 위하여 인간 시각 시스템을 반영한 CSF(Contrast Sensitivity Function)를 적용하고, 표적이 강조된 영상에서 영상의 밝기 정보와 거리 정보를 이용하여 표적을 검출한다. 다양한 환경 조건에서 획득된 적외선 영상에 대한 실험 결과들은 제안 알고리즘의 견실한 성능을 보여준다.

Otsu 임계값 설정과 프레임 블록화를 이용한 샷 전환 탐지 (A Stot Change Detection Algorithm using Otsu Threshold and Frame Segmentation)

  • 김승현;황두성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1555-1558
    • /
    • 2015
  • 본 논문에서는 프레임 블록화와 Otsu 임계값 설정 방법을 이용한 샷 전환 탐지 알고리즘을 제안한다. 제안 방법은 연속된 두 프레임을 일정 크기의 영역으로 분할하여 두 프레임 간 대응되는 영역의 히스토그램 차이를 이용해 샷 전환을 탐지한다. 또한 각 영상마다 Otsu 임계값 설정 방법을 이용하여 자동으로 임계값을 설정한다. 제안 방법의 실험은 영화, 드라마, 애니메이션 등 다양한 영상에 대해 테스트되었으며, 기 연구된 샷 전환 탐지 알고리즘과 비교 시 우수한 탐지율을 보였다.

동적인 임계화 방법과 개선된 학습 알고리즘의 신경망을 이용한 차량 번호판 인식 (Recognition of Car License Plate by Using Dynamical Thresholding and Neural Network with Enhanced Learning Algorithm)

  • 김광백;김영주
    • 정보처리학회논문지B
    • /
    • 제9B권1호
    • /
    • pp.119-128
    • /
    • 2002
  • 본 논문에서는 차량 영상으로부터 동적인 임계화 방법과 개선된 성능의 학습 알고리즘에 의한 신경망을 이용하여 차량 번호판 인식방법을 제안하였다. 제안된 방법에서 번호판 영역은 차량 영상의 구조적 속성을 이용한 동적인 임계화 방법과 밀집비율을 함께 고려하여 추출하였다. 추출된 영역으로부터의 개별문자와 숫자는 윤곽선 추적 알고리즘을 이용하여 각각 추출하였으며, 그들의 인식을 위해서 수정된 ART1과 지도 학습 방법을 결합한 개선된 성능의 신경망을 이용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 차량 번호판들을 대상으로 실험한 결과, 기존의 그레이 명암이나 RGB 컬러 정보들을 이용하는 방법보다 추출률이 개선되었으며, 인식성능도 기존의 오류 역전파 알고리즘의 신경망보다 우수한 성능이 있음을 확인하였다.

문자 영상을 위한 효율적인 이진화 방법 (An Effective Binarization Method for Character Image)

  • 김도현;정호영;조훈;차의영
    • 한국정보통신학회논문지
    • /
    • 제10권10호
    • /
    • pp.1877-1884
    • /
    • 2006
  • 영상의 이진화는 영상을 물체와 배경으로 구분하는 전처리 과정으로써, 처리해야 할 대상이 되는 물체를 규정하기 위한 매우 중요한 처리과정이며 크게 전역 임계 값 설정 방법과 지 역 임계값 설정 방법으로 분류할 수 있다. 본 논문에서는 전역적 이진화 방법의 장점과지역적 이진화 방법의 장점을 결합하여 문자 영역에 대한 효율적이고 적응적인 이진화 방법을 제안한다. 한글 명도 영상을 대상으로 실험한 결과 지역적 이진화 알고리즘보다 훨씬 빠른 속도로 더 좋은 품질의 문자 이진화가 가능함을 확인할 수 있었다.

이동 카메라 영상에서 움직이는 물체 검출 및 추적 (Detection and Tracking of Moving Object in Moving Camera Images)

  • 오윤환;이은주
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2007년도 춘계학술대회
    • /
    • pp.1-8
    • /
    • 2007
  • 본 논문은 저해상도와 많은 노이즈를 갖는 일반 CCTV의 입력 영상에서 실시간으로 움직이는 물체를 검출하고 그 물체의 움직임을 추적하는 방법을 제안 한다. 본 논문은 CCTV영상으로부터의 입력 영상을 순차를 갖는 명암도 영상으로 실시간 변환 하여 진행 한다. 움직이는 물체의 추출은 첫째, 획득한 영상의 그레이 영상을 포스터라이징을 이용하여 명암 분포를 축소하고 차영상을 통해 윤곽을 추출한다. 둘째, 본 논문이 제안하는 영역 단위 이진화를 통해 이진화와 잡음의 제거를 동시에 수행한다. 셋째, 손실된 정보의 보정을 위해 이진 영상의 팽창을 수행한다. 넷째, 이진 영상의 가로/세로 명암 밀도 분포를 통해 움직이는 물체 영역을 검출한다. 검출된 물체의 추적은 현 재 프레임의 물체 영역과 이전 프레임의 물체 영역의 중심을 계산한 후, 두 중심의 거리 차를 계산한다. 계산된 거리가 임계값보다 작을 경우 같은 물체로 인식하고 계속 추적하며, 임계값 이상의 값일 경우 새로운 물체로 인식한다. 추적된 이동물체의 중심점이 화면의 중앙 부분에 있지 않을 경우, 이동물체의 중심으로 카메라의 방향을 조정한다. 실험결과, 제안한 방법으로 저해상도와 많은 노이즈를 갖는 일반 CCTV 의 입력 영상에서도 실시간으로 움직이는 물체를 검출하고, 그 물체의 움직임을 추적 할 수 있었다.

  • PDF