• 제목/요약/키워드: 영상 기반 추적

검색결과 864건 처리시간 0.025초

딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰 (A Review of 3D Object Tracking Methods Using Deep Learning)

  • 박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2021
  • 카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.

자동화된 객체추적을 위한 구형 영상으로의 좌표 변환 알고리즘 (Coordinate Conversion Algorithm to Spherical Image for Automated Object Tracking)

  • 김청화;전소연;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.174-176
    • /
    • 2018
  • 본 논문에서는 직사각형 영상에서의 객체 좌표를 회전축과의 각도로 표현하는 방법을 적용한 자동화된 객체추적 알고리즘을 제안한다. 직사각형 영상을 구형으로 맵핑했을 때 객체의 정확한 좌표를 알아내기 위해 비례식을 사용하였다. 실제 영상이 구형 영상으로 맵핑되었을 때, 화면에 보이는 중앙점을 기반으로 실제 영상의 좌측상단 좌표를 구하였다. 앞서 구한 좌표를 이용하여 실제 영상의 좌측상단에서 객체의 이동 거리를 더하면 구형 영상에서 객체의 실제 좌표를 구할 수 있다. 제안한 방법을 통해서 관심 객체의 움직임을 효과적으로 추적하였다.

  • PDF

비디오 영상에서 사전정보 기반의 도로 추적 (Road Tracking based on Prior Information in Video Sequences)

  • 이창우
    • 한국산업정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.19-25
    • /
    • 2013
  • 본 논문에서는 실 도로 환경에서 획득한 영상으로부터 도로 영역을 추적하는 방법을 제안한다. 제안된 방법은 이전 처리 결과로부터 미리 알려진 정보를 이용하여 현재 영상에서 도로를 검출하고 추적하는 방법이다. 제안된 방법은 시스템의 효율을 위해 연속적인 입력 영상에서 하위 60%이내에 도로가 있다고 가정하여 관심의 대상이 되는 영역(Region of Interest, ROI)을 설정하고 이 영역에서만 도로를 검출하고 추적한다. 최초 분할은 플러드필 알고리즘(Flood-fill algorithm)을 수행한 결과로부터 주위 영역과의 유사성을 평가한 후 병합하여 분할한다. 사전 정보로 사용되는 이전 영상에서 분할 결과에서 시드점(Seed Point)을 추출하고 이 시드점을 기준으로 현재 영상을 분할한다. 이전 영상에서 분할된 도로 영역과 현재 영상에서 분할된 결과를 변형된 자카드 계수(Jaccard coefficient)를 이용한 유사도 측정 결과에 따라 다음 영상에서 도로영역을 정제하고 추적한다. 연속적인 입력 영상을 대상으로 실험한 결과는 잡음이 존재하는 영상에서도 도로를 추적하는데 효과적임을 보여준다.

영상 기반의 이차 칼만 필터를 이용한 객체 추적 (Quadratic Kalman Filter Object Tracking with Moving Pictures)

  • 박선배;유도식
    • 한국항행학회논문지
    • /
    • 제20권1호
    • /
    • pp.53-58
    • /
    • 2016
  • 우리는 본 논문에서 이차 칼만 필터를 이용한 영상 기반 객체 추적분야의 새로운 알고리즘을 제안한다. 최근에 발표된 이차 칼만 필터는 영상 기반의 객체의 실제 3차원 공간의 위치를 추적하는 것에는 아직 적용되지 않았다. 2차원 영상 내의 위치를 3차원 공간상의 위치로 환원시키는 것은 비선형적 변환을 수반하기 때문에 그에 맞는 추적 알고리즘을 사용해야만 한다. 이러한 상황에서, 비선형 수식을 이차식으로 근사화하는 이차 칼만 필터가 선형으로 근사화하는 확장 칼만 필터보다 더 정확한 성능을 낼 수 있다. 우리는 동일한 상황을 가정하여 확장 칼만 필터, 무향 칼만 필터, 파티클 필터, 그리고 우리가 제안한 이차 칼만 필터를 이용하여 객체를 추적하고, 그 결과를 비교해 본다. 결론적으로 이차 칼만 필터가 발산율이 확장 칼만 필터에 비해 거의 절반가량 감소하며, 추적 정확도 측면에서 무향 칼만 필터에 비해 1% 가량 우수한 성능을 나타낸다.

감시 카메라와 RFID를 활용한 다수 객체 추적 및 식별 시스템 (Multiple Object Tracking and Identification System Using CCTV and RFID)

  • 김진아;문남미
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권2호
    • /
    • pp.51-58
    • /
    • 2017
  • 안전과 보안상의 이유로 감시 카메라의 시장이 확대되고 있으며 이에 대해 영상 인식 및 추적에 관한 연구도 활발히 진행 중에 있으나 인식 및 추적되는 객체의 정보를 획득하여 객체를 식별하는 데는 한계가 있다. 특히, 감시카메라가 활용되는 쇼핑몰, 공항 등과 같은 개방된 공간에서는 다수의 객체들을 식별하기란 더욱 어렵다. 따라서 본 논문에서는 기존의 영상기반 객체 인식 및 추적 시스템에 RFID 기술을 더하여 객체 식별기능을 추가하고자 하였으며 영상 기반과 RFID의 문제 해결을 위해 상호 보완하고자 하였다. 그리하여 시스템의 모듈별 상호작용을 통해 영상기반 객체 인식 및 추적에 실패할 수 있는 문제와 RFID의 인식 오류로 발생할 수 있는 문제에 대한 해결 방안을 제시하였다. 객체의 식별 정도를 4단계로 분류하여 가장 최상의 단계로 객체가 식별이 되도록 시스템을 설계해 식별된 객체의 데이터 신뢰성을 유지할 수 있도록 하였다. 시스템의 효율성 판단을 위해 시뮬레이션 프로그램을 구현하여 이를 입증하였다.

궤적 정합을 이용한 특징 기반의 차량 추적 시스템 (A Feature-based Vehicle Tracking System using Trajectory Matching)

  • 정영기;조태훈;호요성
    • 대한전자공학회논문지SP
    • /
    • 제38권6호
    • /
    • pp.648-656
    • /
    • 2001
  • 본 논문에서는 지능적인 교통감시를 위해 궤적 정합을 이용한 특징 기반의 새로운 차량 추적 시스템을 제안한다. 제안된 차량 추적 시스템의 전체적인 알고리즘은 특징 추출, 특징 추적 및 궤적 정합을 통한 그룹핑의 세 단계로 구성된다. 특징 추출 및 추적 단계에서는 입력된 영상에서 차량으로 추정할 수 있는 부속 정보를 추출하기 위해 꼭지점 추출 영상처리 기법을 적용하여 차량의 특징점으로 추출하고 선형 칼만 필터을 이용하여 특징들을 추적한다. 그룹핑 단계에서는 개별 차량에 소속된 특징점들을 하나의 그룹으로 분류한다. 이때, 특징 기반 추적방식의 문제점인 객체 중첩 문제를 해결하기 위해 특징들의 위치 정보와 궤적 정합을 이용한 새로운 그룹핑 방법을 제시한다 마지막으로, 차량들이 근접하거나 부분 겹침이 일어나는 경우의 교통영상에 적용하여 제안된 추적 시스템의 성능을 보인다.

  • PDF

효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법 (Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality)

  • 이진영;김종호
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.49-55
    • /
    • 2019
  • 본 논문에서는 효과적인 마커기반의 증강현실 구현을 위하여 영상 내 객체의 분포에 대한 분석과 반복 패턴을 포함하는 영상의 분류를 통한 마커영상의 평가 방법을 제안한다. 객체의 분포는 영상의 부분적 가림 현상에 따라 객체추적성능에 영향을 미치기 때문에 특징점 좌표의 분산을 이용하여 가림 현상에 취약한 마커영상을 구분할 수 있도록 하였고, 일반 영상과 반복 패턴을 포함하는 영상의 특징점 기술자 벡터의 분포가 현저하게 다르다는 사실에 기반하여 객체의 인식 및 추적에 적합한 영상을 구분할 수 있는 방법을 제안한다. 다양한 실험 결과 제안하는 마커 평가 방법이 가림 현상에 취약한 영상 및 반복 패턴 영상을 구분하는데 우수한 성능을 보이는 것을 확인하였다. 또한 마커영상에 대한 객체 추적 등의 안정성 측면에서 SURF보다 SIFT 기법이 우수한 성능을 보임을 확인할 수 있었다. 이러한 결과를 이용하여 다양한 종류의 마커영상에 대한 적합성 정보를 사용자에게 제공함으로써 효과적인 증강현실 시스템을 구현할 수 있을 것으로 판단된다.

객체 추적 카메라 제어를 위한 고속의 움직임 검출 및 추적 알고리즘 (A Fast Motion Detection and Tracking Algorithm for Automatic Control of an Object Tracking Camera)

  • 강동구;나종범
    • 방송공학회논문지
    • /
    • 제7권2호
    • /
    • pp.181-191
    • /
    • 2002
  • 능동 감시 카메라에서 얻어진 연속 영상에는 카메라의 움직임에 의해 발생하는 전역 움직임과 이동 물체의 국부 움직임이 동시에 존재한다. 따라서 이동 물체의 자동 추적을 위한 영상 기반의 실시간 감시 시스템의 구현을 위해 이동 물체의 국부 움직임만을 검출하고 추적할 수 있는 효과적인 알고리즘이 요구된다. 이 논문에서는 연속 영상의 차영상을 이용하는 빠르고 효율적인 움직임 검출 및 추적 알고리즘을 제안한다. 이 알고리즘은 우선 물체의 속도를 고려하여 이전 영상을 선택하고. 현재 영상과 선택된 이전 영상에 존재하는 전역 움직임을 빠르고 정확하게 추정하기 위해 신뢰성 있는 소수의 정합 블록만을 선택하여 사용한다. 마지막으로 현재 영상과 전역 움직임이 보상된 이전 영상의 차영상을 얻고, 현재 영상과 차영상의 상관 관계를 이용하여 차영상에 존재하는 강한 잡음을 효과적으로 제거하여 이동 물체 영역을 추출한다. 팬틸트 유닛과 AMD 800MHz 프로세서가 내장된 PC로 구성된 능동 카메라 시스템에 제안한 알고리즘을 적용하였다. 이 시스템은 320$\times$240 크기의 영상을 처리하며 수평 수직 방향의 $\pm$20 탐색 영역에서 전역 움직임을 추정할 때 약 50 frames/sec 의 속도로 움직임 검출이 가능하므로 빠른 이동 물체의 실시간 추적에 적합하다.

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식

  • 정호근;이재언;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.526-535
    • /
    • 2005
  • 우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.

  • PDF

비겹침 다중 IP 카메라 기반 영상감시시스템의 객체추적 프레임워크 (Object Tracking Framework of Video Surveillance System based on Non-overlapping Multi-camera)

  • 한민호;박수완;한종욱
    • 정보보호학회논문지
    • /
    • 제21권6호
    • /
    • pp.141-152
    • /
    • 2011
  • 다양한 감시 환경에서의 보안의 중요성이 대두됨에 따라 여러 대의 카메라로 움직이는 물체를 연속적으로 추적하는 시스템에 대한 연구가 활발히 진행되고 있다. 본 논문은 물체를 연속적으로 추적하기 위해 비겹침 다중 카메라 기반의 영삼감시시스템을 제안한다. 제안된 다중 IP 카메라 기반 객체추적 기술은 장치 간 hand-off 기술 및 프로토콜을 바탕으로 객체추적 모듈과 추적관리 모듈로 구성된다. 객체추적 모듈은 IP 카메라에서 실행되며 객체추적 정보 생성, 객체추적 정보 공유, 객체추적 정보를 이용한 객체 검색 및 모듈 내 설정 기능을 제공하고, 추적관리 모듈은 영상관제 서버에서 실행되며 객체추적 정보 실시간 수신, 객체추적 정보 검색, IP 카메라 컨트롤 기능을 제공한다. 본 논문에서 제안한 객체추적 기술은 다양한 감시 환경과 기술 방법에 의존하지 않는 범용적 프레임워크를 제안한다.