본 연구는 항만에서 안전 수칙을 위반하여 발생하는 사고 및 이상행동을 실시간 탐지를 수행한 후 위험 상황을 관리자가 신속하고 정확하게 대처할 수 있도록 지원하는 지능형 CCTV, Smart Eye를 제안한다. Smart Eye는 컴퓨터 비전(Computer Vision) 기반의 다양한 객체 탐지(Object Detection) 모델과 행동 인식(Action Recognition) 모델을 통해 낙하 및 전도사고, 안전 수칙 미준수 인원, 폭력적인 행동을 보이는 인원을 복합적으로 판단하며, 객체 추적(Object Tracking), 관심 영역(Region of Interest), 객체 간의 거리 측정 알고리즘을 구현하여, 제한구역 접근, 침입, 배회, 안전 보호구 미착용 인원 그리고 화재 및 충돌사고 위험도를 측정한다. 해당 연구를 통한 자동화된 24시간 감시체계는 실시간 영상 데이터 분석 및 판단 처리 과정을 거친 후 각 장소에서 수집된 데이터를 관리자에게 신속히 전달하고 항만 내 통합관제센터에 접목함으로써 효율적인 관리 및 운영할 수 있게 하는 '지능형 인프라'를 구축할 수 있다. 이러한 체계는 곧 스마트 항만 시스템 도입에 이바지할 수 있을 것으로 기대된다.
조호환경이란 환자의 지속적인 추적 및 관찰이 필요한 환경으로써, 병원 입원실, 요양원 등을 의미한다. 조호환경 내 환자의 이상 증세가 발생하는 시간 및 이상 증세의 종류는 예측할 수 없기에 인력을 통한 상시 관리는 필수적이다. 또한, 환자의 이상 증세 발견 시간은 발병 시점부터의 소요 시간이 생사와 즉결되기에 빠른 발견이 매우 중요하다. 하지만, 인력을 통한 상시 관리는 많은 경제적 비용을 수반하기에 독거 노인, 빈민층 등 요양 비용을 충당하지 못하는 환자들이 수혜받는 것은 어려우며, 인력을 통해 이루어지기 때문에 이상 증세 발병 즉시 발견에 한계를 가진다. 즉, 기존까지 조호환경 내 환자 관리 방식은 경제적 비용과 이상 증세 발병 즉시 발견에 한계를 가진다는 문제점을 가진다. 따라서 본 논문은 YOLO 모델의 조호환경 내 환자 탐지 성능 비교 및 바운딩 박스 앙상블 기법을 제안한다. 이를 통해, 딥러닝 모델을 통한 환자 상시 관리가 이루어지기에 높은 경제적 비용문제를 해소할 수 있다. 또한, YOLO 모델 바운딩 박스 앙상블 기법 WBF를 통해 폐색이 짙은 조호환경 영상 데이터 내에 객체 탐지 영역 정확도 향상 방법을 연구하였다.
본 연구에서는 적조 Cochlodinium Polykrikoide를 기계학습 방법과 정지궤도 해색위성 영상을 활용하여 탐지하는 방법을 제안한다. 기계학습 모형을 학습시키기 위해 GOCI Level2 자료를 활용하였으며, 국립수산과학원의 적조 속보 자료를 활용하였다. 기계학습 모델은 로지스틱 회귀모형, 의사결정나무 모형, 랜덤포래스트 모형을 사용하였다. 성능 평가 결과 기계학습을 사용하지 않은 전통적인 GOCI 영상 기반 적조 탐지 알고리즘(Son et al.,2012) (75%)과 비교해보았을 때 약 13~22%p (88~98%)의 정확도 향상을 확인할 수 있었다. 또한 기계학습 모형 간 탐지 성능을 비교 분석해본 결과 랜덤 포레스트 모형(98%)이 가장 높은 탐지 정확도를 보였다. 이러한 기계학습 기반 적조 탐지 알고리즘은 향후 적조를 조기에 탐지하고 그 이동과 확산을 추적 모니터링하는데 활용될 수 있을 것이라고 판단된다.
최근의 영상 처리 분야는 딥러닝 기법들의 성능이 입증됨에 따라 다양한 분야에서 이와 같은 기법들을 활용해 영상에 대한 분류, 분석, 검출 등을 수행하려는 시도가 활발하다. 그중에서도 의료 진단 보조 역할을 할 수 있는 의료 영상 분석 소프트웨어에 대한 기대가 증가하고 있는데, 본 연구에서는 데이터 셋이 방대하고 판단에 시간이 오래 걸리는 캡슐내시경 영상에 주목하였다. 본 논문의 목적은 캡슐내시경 영상의 판독에서 모든 환자에 대해 공통으로 수행되고, 판독하는 데 많은 시간을 차지하는 위장관 랜드마크를 구별하고 위장관 교차점을 추정하는 것이다. 이를 위해, 위장관 랜드마크를 식별할 수 있는 CNN 학습 모델을 설계하였으며, 이를 이용하여 결괏값을 필터링해 위장관 교차점을 추정하였다. 무작위로 환자 데이터를 샘플링한 모델을 이용해서 나온 결과를 필터링 후에 위장관 교차점을 추정하였을 때, 88% 환자는 위장에서 소장으로 변화하는 위장관 교차점(유문판) 의심 구역 안에 들어왔으며, 소장에서 대장으로 변화하는 위장관 교차점(회맹판)의 경우 100% 환자가 위장관 교차점 의심 구역 안에 들어온 것을 확인할 수 있었다. 100프레임 범위로 위장관 교차점 의심 구역을 찾을 수 있었으며, 판독자가 초당 10프레임의 속도로 판독을 진행한다면 10초안에 위장관 교차점을 찾아낼 수 있다.
본 논문에서는 신호 교차로에서 red-time 및 green-time의 backward moving 충격파 속도를 자동 측정하는 영상처리 기반 방법을 제안한다. 충격파(shockwave)란 서로 다른 교통류 상태가 만나는 불연속적인 경계선을 의미하며, 충격파 속도는 충격파가 움직이는 속도 즉, 경계선의 기울기로 구해진다. 본 논문에서는 충격파 속도를 자동 측정하기 위해 거리-시간 다이어그램(distance-time diagram)을 작성하였다. 차량의 전역 추적을 통해서 모든 개별 차량의 이동 경로를 거리-시간 다이어그램에 나타내었고, 이동 경로 곡선의 기울기 변화 패턴을 분석하여 red-time 및 green-time의 backward moving 충격파 속도를 계산하였다. 제안된 방법을 신호 교차로에서 실험하였고 red-time 및 green-time backward moving 충격파 속도의 측정 결과를 얻었다. 충격파 속도를 측정하게 되면 차량 진행 방향의 교통 혼잡 상황을 쉽게 파악할 수 있으므로 고속 도로의 진입차선 제어, 교차로의 자동 신호제어에 효과적으로 응용할 수 있다.
기존의 배경 생성방법은 주로 시간에 따른 context만을 이용해 복잡한 환경에서는 적용하기 힘들다. 이러한 단점을 해결하기 위해, 본 논문에서는 움직이는 물체를 포함하지 않는 배경 영상을 생성하기 위해 시간에 따른 context와 공간에 따른 context를 융합한 새로운 배경 생성 방법을 제안한다. 제안한 방법은 먼저 샘플링된 프레임 이미지를 m*n의 블록으로 나누고 각각의 블록을 고정 블록과 비고정 블록으로 나눈다. 비고정 블록에 대해서, 각 블록의 시간적 context와 공간적 context를 모델링하기 위해 MRF 프레임워크를 이용한다. MRF 프레임워크는 영상 픽셀과 연관된 특징과 같은 context에 독립된 entity를 모델링하는데 많이 이용되는 방법으로 본 논문에서는 비고정 블록에 대한 시간적 context와 공간적 context를 모델링하기 위해 이용된다. 실험결과는 제안한 방법이 기존의 시간에 따른 context만을 이용했을 경우보다 더 효율적임을 보여준다.
전 세계적으로 빌딩 에너지 세이빙에 대한 관심이 증가하고 있으며, BEMS(Building Energy Management System)을 효율적으로 운용하기 위한 IT 기술에 대한 연구를 지속적으로 진행하고 있다. 최근 LED 조명기술의 발전으로 LED를 제어하여 에너지 절감효과를 극대화 할 수 있으며 BEMS에 이러한 LED 조명 제어기술들이 개발되고 있다. 본 논문에서는 건물에 설치되어 있는 IP 카메라와 Adaptive GMM(Gaussian Mixture Model)을 이용하여 BEMS용 LED 조명제어에 대한 시스템을 제안하였다. 설계한 구조를 기반으로 빌딩의 영상을 실시간으로 모니터링하고, 동적 객체를 영상추적하며, 다수의 객체를 클러스터링하고 인체 이동을 감지하여 LED 조명을 제어하는 기능을 제안하고, 관련 Software 개발을 통해 구현가능성을 입증하였다.
본 논문은 환경변화에 강인한 센서 융합 교통정보 수집 시스템을 제안한다. 제안된 시스템은 각 센서의 특징을 융합하여 영상 검지기에 비해 환경에 강인하고, 주 야간 등 시간에 영향을 받지 않으며 루프 검지기에 비해 유지보수에 드는 비용이 적다. 이는 레이더의 물체 추적 기법과 영상검지기의 차량분류, 적외선거리계의 신뢰성 높은 객체검지 정보를 융합하고 각 센서의 문제점을 보완하여 개선을 이루었다. 구현된 시스템을 보행자의 통행이 가능한 도로에서 주 야간 5일에 걸쳐 6시간 동안 실험한 결과 88.7%의 분류정확도와 95.5%의 차량 검지율을 나타내었다. 본 시스템의 파라미터 최적화 작업을 실험환경에 따라 적응되는 방식으로 보완한다면 교통정보 수집 체계의 고도화에 기여할 수 있을 것으로 기대된다.
딥러닝 기술의 발전으로 가상 현실이나 증강 현실 응용에서 사용하기 적절한 사용자 친화적 인터페이스에 관한 연구가 활발히 이뤄지고 있다. 본 논문은 사용자의 손을 이용한 인터페이스를 지원하기 위하여 손 끝 좌표를 추적하여 가상의 객체를 선택하거나, 공중에 글씨나 그림을 작성하는 행위가 가능하도록 딥러닝 기반 손 끝 객체 탐지 방법을 제안한다. 입력 영상에서 Grad-CAM으로 해당 손 끝 객체의 대략적인 부분을 잘라낸 후, 잘라낸 영상에 대하여 Atrous Convolution을 이용한 합성곱 신경망을 수행하여 손 끝의 위치를 찾는다. 본 방법은 객체의 주석 전처리 과정을 별도로 요구하지 않으면서 기존 객체 탐지 알고리즘 보다 간단하고 구현하기에 쉽다. 본 방법을 검증하기 위하여 Air-Writing 응용을 구현한 결과 평균 81%의 인식률과 76 ms 속도로 허공에서 지연 시간 없이 부드럽게 글씨 작성이 가능하여 실시간으로 활용 가능함을 알 수 있었다.
본 논문에서는 영상법 기반의 3차원 광선추적법에 패치산란모델을 이용하여 실내 구조물을 고려할 수 있는 실내 전파모델링 방법을 제시하였다. 실내 구조물을 모델링하기 위한 패치산란모델은 패치형태의 직사각형 평면에 대한 RCS를 이용하여 입사에 대한 산란현상을 정의한 것으로써, 책상이나 테이블 같은 평면적인 실내구조물에 대한 산란현상을 각각의 구조물에 대한 영상 안테나를 발생시키는 복잡한 과정 없이 간단하게 해석하기 위한 것이다. RCS는 간단히 입사 전력에 대한 산란 전력의 비로 정의되며 본 논문에서는 다양한 수신 각도에서 바라보는 bistatic RCS를 물리광학(Physical Optics)을 이용하여 수식적으로 유도하여 패치산란모델에 이용하였다. 또한 실내의 다중경로 성분에 대해 계산하지 않는 패치산란모델을 실내에 적용하기 위하여 복잡한 수식보다는 단순한 보정값인 실내보정값을 정의하였는데, 본 논문에서는 이 값을 다양한 패치 환경의 측정에 의한 경험적 상수로 처리함으로써 RCS의 고려만으로는 실내에 적용할 수 없는 점을 극복하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.