• 제목/요약/키워드: 영상 기반 추적

검색결과 864건 처리시간 0.027초

항만 안전을 위한 지능형 CCTV, "Smart Eye" (Intelligent CCTV for Port Safety, "Smart Eye")

  • 백승호;지영일;최한샘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.1056-1058
    • /
    • 2022
  • 본 연구는 항만에서 안전 수칙을 위반하여 발생하는 사고 및 이상행동을 실시간 탐지를 수행한 후 위험 상황을 관리자가 신속하고 정확하게 대처할 수 있도록 지원하는 지능형 CCTV, Smart Eye를 제안한다. Smart Eye는 컴퓨터 비전(Computer Vision) 기반의 다양한 객체 탐지(Object Detection) 모델과 행동 인식(Action Recognition) 모델을 통해 낙하 및 전도사고, 안전 수칙 미준수 인원, 폭력적인 행동을 보이는 인원을 복합적으로 판단하며, 객체 추적(Object Tracking), 관심 영역(Region of Interest), 객체 간의 거리 측정 알고리즘을 구현하여, 제한구역 접근, 침입, 배회, 안전 보호구 미착용 인원 그리고 화재 및 충돌사고 위험도를 측정한다. 해당 연구를 통한 자동화된 24시간 감시체계는 실시간 영상 데이터 분석 및 판단 처리 과정을 거친 후 각 장소에서 수집된 데이터를 관리자에게 신속히 전달하고 항만 내 통합관제센터에 접목함으로써 효율적인 관리 및 운영할 수 있게 하는 '지능형 인프라'를 구축할 수 있다. 이러한 체계는 곧 스마트 항만 시스템 도입에 이바지할 수 있을 것으로 기대된다.

조호환경 내 환자 탐지를 위한 YOLO 모델 기반 바운딩 박스 앙상블 기법 (YOLO models based Bounding-Box Ensemble Method for Patient Detection In Homecare Place Images)

  • 박준휘;김범준;김인기;곽정환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.562-564
    • /
    • 2022
  • 조호환경이란 환자의 지속적인 추적 및 관찰이 필요한 환경으로써, 병원 입원실, 요양원 등을 의미한다. 조호환경 내 환자의 이상 증세가 발생하는 시간 및 이상 증세의 종류는 예측할 수 없기에 인력을 통한 상시 관리는 필수적이다. 또한, 환자의 이상 증세 발견 시간은 발병 시점부터의 소요 시간이 생사와 즉결되기에 빠른 발견이 매우 중요하다. 하지만, 인력을 통한 상시 관리는 많은 경제적 비용을 수반하기에 독거 노인, 빈민층 등 요양 비용을 충당하지 못하는 환자들이 수혜받는 것은 어려우며, 인력을 통해 이루어지기 때문에 이상 증세 발병 즉시 발견에 한계를 가진다. 즉, 기존까지 조호환경 내 환자 관리 방식은 경제적 비용과 이상 증세 발병 즉시 발견에 한계를 가진다는 문제점을 가진다. 따라서 본 논문은 YOLO 모델의 조호환경 내 환자 탐지 성능 비교 및 바운딩 박스 앙상블 기법을 제안한다. 이를 통해, 딥러닝 모델을 통한 환자 상시 관리가 이루어지기에 높은 경제적 비용문제를 해소할 수 있다. 또한, YOLO 모델 바운딩 박스 앙상블 기법 WBF를 통해 폐색이 짙은 조호환경 영상 데이터 내에 객체 탐지 영역 정확도 향상 방법을 연구하였다.

GOCI 영상과 기계학습 기법을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구 (Study on Detection for Cochlodinium polykrikoides Red Tide using the GOCI image and Machine Learning Technique)

  • 엥흐자리갈 운자야;박수호;황도현;정민지;김나경;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1089-1098
    • /
    • 2020
  • 본 연구에서는 적조 Cochlodinium Polykrikoide를 기계학습 방법과 정지궤도 해색위성 영상을 활용하여 탐지하는 방법을 제안한다. 기계학습 모형을 학습시키기 위해 GOCI Level2 자료를 활용하였으며, 국립수산과학원의 적조 속보 자료를 활용하였다. 기계학습 모델은 로지스틱 회귀모형, 의사결정나무 모형, 랜덤포래스트 모형을 사용하였다. 성능 평가 결과 기계학습을 사용하지 않은 전통적인 GOCI 영상 기반 적조 탐지 알고리즘(Son et al.,2012) (75%)과 비교해보았을 때 약 13~22%p (88~98%)의 정확도 향상을 확인할 수 있었다. 또한 기계학습 모형 간 탐지 성능을 비교 분석해본 결과 랜덤 포레스트 모형(98%)이 가장 높은 탐지 정확도를 보였다. 이러한 기계학습 기반 적조 탐지 알고리즘은 향후 적조를 조기에 탐지하고 그 이동과 확산을 추적 모니터링하는데 활용될 수 있을 것이라고 판단된다.

CNN 기반 위장관 랜드마크 분류기를 이용한 위장관 교차점 추정 (Estimating Gastrointestinal Transition Location Using CNN-based Gastrointestinal Landmark Classifier)

  • 장현웅;임창남;박예슬;이광재;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권3호
    • /
    • pp.101-108
    • /
    • 2020
  • 최근의 영상 처리 분야는 딥러닝 기법들의 성능이 입증됨에 따라 다양한 분야에서 이와 같은 기법들을 활용해 영상에 대한 분류, 분석, 검출 등을 수행하려는 시도가 활발하다. 그중에서도 의료 진단 보조 역할을 할 수 있는 의료 영상 분석 소프트웨어에 대한 기대가 증가하고 있는데, 본 연구에서는 데이터 셋이 방대하고 판단에 시간이 오래 걸리는 캡슐내시경 영상에 주목하였다. 본 논문의 목적은 캡슐내시경 영상의 판독에서 모든 환자에 대해 공통으로 수행되고, 판독하는 데 많은 시간을 차지하는 위장관 랜드마크를 구별하고 위장관 교차점을 추정하는 것이다. 이를 위해, 위장관 랜드마크를 식별할 수 있는 CNN 학습 모델을 설계하였으며, 이를 이용하여 결괏값을 필터링해 위장관 교차점을 추정하였다. 무작위로 환자 데이터를 샘플링한 모델을 이용해서 나온 결과를 필터링 후에 위장관 교차점을 추정하였을 때, 88% 환자는 위장에서 소장으로 변화하는 위장관 교차점(유문판) 의심 구역 안에 들어왔으며, 소장에서 대장으로 변화하는 위장관 교차점(회맹판)의 경우 100% 환자가 위장관 교차점 의심 구역 안에 들어온 것을 확인할 수 있었다. 100프레임 범위로 위장관 교차점 의심 구역을 찾을 수 있었으며, 판독자가 초당 10프레임의 속도로 판독을 진행한다면 10초안에 위장관 교차점을 찾아낼 수 있다.

교통 영상에서의 Backward Moving 충격파 속도 측정 (Backward Moving Shockwave Speed Measurement in Traffic Images)

  • 권영탁;소영성
    • 융합신호처리학회논문지
    • /
    • 제3권3호
    • /
    • pp.6-13
    • /
    • 2002
  • 본 논문에서는 신호 교차로에서 red-time 및 green-time의 backward moving 충격파 속도를 자동 측정하는 영상처리 기반 방법을 제안한다. 충격파(shockwave)란 서로 다른 교통류 상태가 만나는 불연속적인 경계선을 의미하며, 충격파 속도는 충격파가 움직이는 속도 즉, 경계선의 기울기로 구해진다. 본 논문에서는 충격파 속도를 자동 측정하기 위해 거리-시간 다이어그램(distance-time diagram)을 작성하였다. 차량의 전역 추적을 통해서 모든 개별 차량의 이동 경로를 거리-시간 다이어그램에 나타내었고, 이동 경로 곡선의 기울기 변화 패턴을 분석하여 red-time 및 green-time의 backward moving 충격파 속도를 계산하였다. 제안된 방법을 신호 교차로에서 실험하였고 red-time 및 green-time backward moving 충격파 속도의 측정 결과를 얻었다. 충격파 속도를 측정하게 되면 차량 진행 방향의 교통 혼잡 상황을 쉽게 파악할 수 있으므로 고속 도로의 진입차선 제어, 교차로의 자동 신호제어에 효과적으로 응용할 수 있다.

  • PDF

MRF 프레임워크 기반 비모수적 배경 생성 (Non-parametric Background Generation based on MRF Framework)

  • 조상현;강행봉
    • 정보처리학회논문지B
    • /
    • 제17B권6호
    • /
    • pp.405-412
    • /
    • 2010
  • 기존의 배경 생성방법은 주로 시간에 따른 context만을 이용해 복잡한 환경에서는 적용하기 힘들다. 이러한 단점을 해결하기 위해, 본 논문에서는 움직이는 물체를 포함하지 않는 배경 영상을 생성하기 위해 시간에 따른 context와 공간에 따른 context를 융합한 새로운 배경 생성 방법을 제안한다. 제안한 방법은 먼저 샘플링된 프레임 이미지를 m*n의 블록으로 나누고 각각의 블록을 고정 블록과 비고정 블록으로 나눈다. 비고정 블록에 대해서, 각 블록의 시간적 context와 공간적 context를 모델링하기 위해 MRF 프레임워크를 이용한다. MRF 프레임워크는 영상 픽셀과 연관된 특징과 같은 context에 독립된 entity를 모델링하는데 많이 이용되는 방법으로 본 논문에서는 비고정 블록에 대한 시간적 context와 공간적 context를 모델링하기 위해 이용된다. 실험결과는 제안한 방법이 기존의 시간에 따른 context만을 이용했을 경우보다 더 효율적임을 보여준다.

Adaptive GMM을 활용한 BEMS용 조명제어 연구 (A Study on the control of lights for BEMS using Adaptive GMM)

  • 고광석;이주영;강용식;심동하;김재문;김은수;이종성;차재상
    • 한국위성정보통신학회논문지
    • /
    • 제7권3호
    • /
    • pp.116-120
    • /
    • 2012
  • 전 세계적으로 빌딩 에너지 세이빙에 대한 관심이 증가하고 있으며, BEMS(Building Energy Management System)을 효율적으로 운용하기 위한 IT 기술에 대한 연구를 지속적으로 진행하고 있다. 최근 LED 조명기술의 발전으로 LED를 제어하여 에너지 절감효과를 극대화 할 수 있으며 BEMS에 이러한 LED 조명 제어기술들이 개발되고 있다. 본 논문에서는 건물에 설치되어 있는 IP 카메라와 Adaptive GMM(Gaussian Mixture Model)을 이용하여 BEMS용 LED 조명제어에 대한 시스템을 제안하였다. 설계한 구조를 기반으로 빌딩의 영상을 실시간으로 모니터링하고, 동적 객체를 영상추적하며, 다수의 객체를 클러스터링하고 인체 이동을 감지하여 LED 조명을 제어하는 기능을 제안하고, 관련 Software 개발을 통해 구현가능성을 입증하였다.

환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발 (Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder)

  • 변기훈;김세진;권장우
    • 한국ITS학회 논문지
    • /
    • 제16권2호
    • /
    • pp.36-54
    • /
    • 2017
  • 본 논문은 환경변화에 강인한 센서 융합 교통정보 수집 시스템을 제안한다. 제안된 시스템은 각 센서의 특징을 융합하여 영상 검지기에 비해 환경에 강인하고, 주 야간 등 시간에 영향을 받지 않으며 루프 검지기에 비해 유지보수에 드는 비용이 적다. 이는 레이더의 물체 추적 기법과 영상검지기의 차량분류, 적외선거리계의 신뢰성 높은 객체검지 정보를 융합하고 각 센서의 문제점을 보완하여 개선을 이루었다. 구현된 시스템을 보행자의 통행이 가능한 도로에서 주 야간 5일에 걸쳐 6시간 동안 실험한 결과 88.7%의 분류정확도와 95.5%의 차량 검지율을 나타내었다. 본 시스템의 파라미터 최적화 작업을 실험환경에 따라 적응되는 방식으로 보완한다면 교통정보 수집 체계의 고도화에 기여할 수 있을 것으로 기대된다.

Atrous Convolution과 Grad-CAM을 통한 손 끝 탐지 (Fingertip Detection through Atrous Convolution and Grad-CAM)

  • 노대철;김태영
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권5호
    • /
    • pp.11-20
    • /
    • 2019
  • 딥러닝 기술의 발전으로 가상 현실이나 증강 현실 응용에서 사용하기 적절한 사용자 친화적 인터페이스에 관한 연구가 활발히 이뤄지고 있다. 본 논문은 사용자의 손을 이용한 인터페이스를 지원하기 위하여 손 끝 좌표를 추적하여 가상의 객체를 선택하거나, 공중에 글씨나 그림을 작성하는 행위가 가능하도록 딥러닝 기반 손 끝 객체 탐지 방법을 제안한다. 입력 영상에서 Grad-CAM으로 해당 손 끝 객체의 대략적인 부분을 잘라낸 후, 잘라낸 영상에 대하여 Atrous Convolution을 이용한 합성곱 신경망을 수행하여 손 끝의 위치를 찾는다. 본 방법은 객체의 주석 전처리 과정을 별도로 요구하지 않으면서 기존 객체 탐지 알고리즘 보다 간단하고 구현하기에 쉽다. 본 방법을 검증하기 위하여 Air-Writing 응용을 구현한 결과 평균 81%의 인식률과 76 ms 속도로 허공에서 지연 시간 없이 부드럽게 글씨 작성이 가능하여 실시간으로 활용 가능함을 알 수 있었다.

패치산란모델을 이용한 실내 전파모델링에 관한 연구 (A Study on Indoor Propagation Modeling using Patch Scattering Model)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • 한국전자파학회논문지
    • /
    • 제12권5호
    • /
    • pp.772-772
    • /
    • 2001
  • 본 논문에서는 영상법 기반의 3차원 광선추적법에 패치산란모델을 이용하여 실내 구조물을 고려할 수 있는 실내 전파모델링 방법을 제시하였다. 실내 구조물을 모델링하기 위한 패치산란모델은 패치형태의 직사각형 평면에 대한 RCS를 이용하여 입사에 대한 산란현상을 정의한 것으로써, 책상이나 테이블 같은 평면적인 실내구조물에 대한 산란현상을 각각의 구조물에 대한 영상 안테나를 발생시키는 복잡한 과정 없이 간단하게 해석하기 위한 것이다. RCS는 간단히 입사 전력에 대한 산란 전력의 비로 정의되며 본 논문에서는 다양한 수신 각도에서 바라보는 bistatic RCS를 물리광학(Physical Optics)을 이용하여 수식적으로 유도하여 패치산란모델에 이용하였다. 또한 실내의 다중경로 성분에 대해 계산하지 않는 패치산란모델을 실내에 적용하기 위하여 복잡한 수식보다는 단순한 보정값인 실내보정값을 정의하였는데, 본 논문에서는 이 값을 다양한 패치 환경의 측정에 의한 경험적 상수로 처리함으로써 RCS의 고려만으로는 실내에 적용할 수 없는 점을 극복하였다.