• Title/Summary/Keyword: 영상 기반 추적

검색결과 864건 처리시간 0.028초

무인 감시시스템을 위한 DMAM기반의 표적 추적 (DMAM Based Target Tracking for Automatic Surveillance System)

  • 강이철;제성관;강민경;차의영
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.147-150
    • /
    • 2000
  • 본 논문은 무인감시 시스템의 특성상 조명 상태의 변화나 카메라의 흔들림과 같은 환경의 변화에 적응할 수 있도록 연속된 세 프레임간의 차영상를 이용하는 방법을 적용하여 움직임 정보를 추출하고, 영역의 분할 및 특징점 추출을 수행한 후에, 인공 신경회로망 기법을 적용하여 이동표적을 추적한다. 추적시에는 추출된 각각의 표적간의 데이터 연결을 움직임 정보의 특징점들을 이용, 레이블링하여 각각의 표적을 연결시켜 추적의 성능을 높였다.

  • PDF

실시간 얼굴 검출 시스템 설계 및 구현 (Design and Implementation of a Real-Time Face Detection System)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.142-145
    • /
    • 2010
  • 본 논문에서는 적외선 조명을 이용한 밝은 동공 효과와 전형적인 외형을 기반으로 한 사물 인식 기술을 결합하여 외부 조명의 간섭으로 밝은 동공 효과가 나타나지 않는 경우에도 견실하게 눈을 검출하고 추적 할 수 있는 방법을 제안한다. 눈 검출과 추적을 위해 SVM과 평균 이동 추적방법을 사용하였고, 적외선 조명과 카메라를 포함한 영상 획득 장치를 구성하여 제안된 방법이 효율적으로 다양한 조명하에서 눈 검출과 추적을 할 수 있음을 보여 주었다.

  • PDF

깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출 (ROI Based Object Extraction Using Features of Depth and Color Images)

  • 류가애;장호욱;김유성;류관희
    • 한국콘텐츠학회논문지
    • /
    • 제16권8호
    • /
    • pp.395-403
    • /
    • 2016
  • 최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.

VTS를 위한 레이더 신호처리 알고리즘 설계

  • 김병두;김도형;이병길
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2012년도 춘계학술대회
    • /
    • pp.519-520
    • /
    • 2012
  • 해상감시레이더는 관제지역의 레이더 영상 정보 및 선박의 위치, 속도에 대한 추적 정보를 제공하는 해상교통관제시스템의 주요 센서로 정밀한 레이더 영상정보의 추출 및 이를 기반한 정확한 선박의 추적을 위하여 레이더 수신신호에 포함된 다양한 클러터 및 잡음을 효율적으로 제거하기 위한 신호처리 알고리즘이 필요하다. 본 논문에서는 해상교통관제시스템에 사용되는 해상감시레이더를 위한 논-코히어런트 기법을 이용한 신호처리 알고리즘을 설계하고, 모의실험을 통하여 설계된 알고리즘에 대한 검증을 수행한다.

  • PDF

효과적인 배경이미지를 통한 물고기 추적 기법 (A Study on Fish Tracking Using The Effective Background Image)

  • 강민경;강이철;김성우;차의영
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.155-158
    • /
    • 2000
  • 본 논문에서는 컴퓨터 비젼의 기술을 이용하여 생태학적인 실험을 위한 기반으로 물고기를 추적하는 방법을 보여준다. 특히 최적의 배경 이미지를 구하여서 그것을 바탕으로 차영상의 기법을 사용하여 인하는 물체(object), 여기서는 물고기만을 얻는다. 그리고 나서 기존의 신경회로망 기법인 ART2를 사용하여서 그 물고기의 영역을 클러스터링하여서 Object의 좌표를 획득한다. 배경이미지를 이용하여 배경을 제외한 object만 난은 영상을 얻는 방법은 기존의 연구에도 많다. 그러나 이 논문의 방식은 더욱더 그 물체의 윤곽을 뚜렷하게 나타내고, 간단한 방법을 소개하고 있다.

  • PDF

파티클 필터 기반 얼굴추적을 위한 효율적 파티클 수과 윈도우즈 크기 분석 (The Analysis of Efficient Particle Number and Windows Size for Particle Filter based Face Tracking)

  • 나인섭;김수형;이귀상;김영철
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2016년도 춘계 종합학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2016
  • 드론의 헬리캠, 스마트폰의 카메라를 통해 얼굴영상을 검출하고, 검출된 얼굴 영역을 지속적으로 추적하는 것은 최근 많은 연구가 진행 중에 있다. 특히 색상기반의 파티클 필터를 사용하는 얼굴추적기법은 빠르고 효과적이나 사용되는 파티클의 수와 윈도우즈의 크기 간의 상간관계는 연구된 바가 없다. 이 논문에서는 색상기반 파티클 필터를 이용하여 얼굴추적 시스템을 구축하고 파티클의 수와 윈도우즈의 크기간의 상관관계를 1집단부터 5집단에 대해 윈도우즈의 크기와 파티클의 수를 변화하며 인식률의 상관관계를 살펴보았다. 파티클의 수는 10부터 120개, 윈도우즈 크기는 20픽셀부터 200픽셀에 대해 실험한 결과 실험의 파티클의 수와 윈도우즈 크기는 인식률에 의미 있는 영향이 없음을 확인했다.

  • PDF

모폴로지 기반의 차영상 분석기법을 이용한 균열검출의 인식 (The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology)

  • 변태모;김장형;김형수
    • 한국정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.197-205
    • /
    • 2006
  • 본 논문에서는 비젼 시스템을 이용하여 이동 물체를 추적하는 방법을 제안하였다. 이동 물체를 계속적으로 추적하기 위해서는 이동 물체의 영상이 화상의 중심점 부근에 위치하도록 해야 한다. 따라서 이동 물체의 영상이 화상의 중심점의 부근에 위치하도록 하기 위하여 팬/틸트(Pan/Tilt)구조의 카메라 모듈을 제어하는 퍼지 제어기를 구현하였다. 향후, 시스템을 이동로봇에 적용하기 위하여 비젼 시스템을 위한 영상처리보드를 설계 제작하였고, 대상물체의 색상과 형태를 파악한 후 퍼지 제어기를 이용하여 카메라모듈이 물체를 추적할 수 있도록 StrongArm 보드를 이용하여 구성하였다. 그리고, 실험에 의해서 제안된 퍼지 제어기 가 실시간 이동물체 추적 시스템에 적용 가능함을 확인 하였다.

스테레오 카메라 추적을 이용한 모바일 3차원 디스플레이 상의 실시간 증강현실 (Real-Time Augmented Reality on 3-D Mobile Display using Stereo Camera Tracking)

  • 박정식;서병국;박종일
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.362-371
    • /
    • 2013
  • 본 논문에서는 스테레오 카메라 추적을 이용한 모바일 3차원 디스플레이 상의 실시간 증강현실 프레임웍에 대하여 기술한다. 모델 기반 추적 방법에 기초하여 카메라 포즈는 스테레오 카메라 간의 기하 관계를 만족하도록 동시 추정된다. 동시 추정된 카메라 포즈를 통해 가상 콘텐츠는 교정된 스테레오 영상에 올바르게 증강된다. 스테레오 카메라 추적과 스테레오 영상 교정은 서로 다른 쓰레드에서 수행하고, 영상 형식 변환 및 스테레오 영상 교정은 GPU로 고속으로 처리함으로써 실시간으로 수행된다. 제안된 프레임웍은 스테레오 카메라와 3차원 디스플레이가 장착된 스마트폰에서 구현되었다.

유전자 알고리즘 기반의 비지도 객체 분할 방법 (Unsupervised Segmentation of Objects using Genetic Algorithms)

  • 김은이;박세현
    • 전자공학회논문지CI
    • /
    • 제41권4호
    • /
    • pp.9-21
    • /
    • 2004
  • 본 논문은 동영상내의 객체를 자동으로 추출하고 추적할 수 있는 유전자 알고리즘 기반의 분할 방법을 제안한다. 제안된 방법은 시간 분할과 공간 분할로 이루어진다. 공간 분할은 각 프레임을 정확한 경계를 가진 영역으로 나누고 시간 분할은 각 프레임을 전경 영역과 배경 영역으로 나눈다. 공간 분할은 분산 유전자 알고리즘을 이용하여 수행된다. 그러나, 일반적인 유전자 알고리즘과는 달리, 염색체는 이전 프레임의 분할 결과로부터 초기화되고, 동적인 객체 부분에 대응하는 불안정 염색체만이 진화연산자에 의해 진화된다. 시간 분할은 두 개의 연속적인 프레임의 밝기 차이에 기반을 둔 적응적 임계치 방법에 의해 수행한다. 얻어진 공간과 시간 분할 결과의 결합을 통해서 객체를 추출하고, 이 객체들은 natural correspondence에 의해 전체 동영상을 통해 정확히 추적된다. 제안된 방법은 다음의 두 가지 장점을 가진다. 1) 제안된 비디오 분할 방법은 사전 정보를 필요로 하지 않는 자동 동영상 분할 방법이다. 2) 제안된 공간 분할방법은 기존의 유전자 알고리즘보다 해공간의 효율적인 탐색을 제공할 수 있을 뿐만 아니라, 정확한 객체 추적 메커니즘을 포함하고 있는 새로운 진화 알고리즘이다. 이러한 장점들은 제안된 방법이 잘 알려진 동영상과 실제 동영상에 성공적으로 적용됨을 통해 검증된다.

환경에 적응적인 얼굴 추적 및 인식 방법 (A New Face Tracking and Recognition Method Adapted to the Environment)

  • 주명호;강행봉
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.385-394
    • /
    • 2009
  • 사람의 얼굴은 강체(Rigid object)가 아니기 때문에 얼굴을 추적하거나 인식하는 일은 쉽지 않다. 특히 얼굴의 포즈나 주변 조명의 변화에 따른 입력 영상의 차이는 얼굴 인식을 어렵게 하는 주된 원인이다. 본 논문에서는 비디오 영상으로부터 얼굴을 추적하고 인식할 때 발생하는 이 두 가지의 문제를 해결하기 위한 프레임웍과 전처리 방법을 제안한다. 얼굴 포즈의 변화에도 효과적으로 얼굴을 추적 및 인식하기 위해 먼저 학습 영상으로부터 주성분 분석법(Principal Component Analysis)을 이용하여 각 얼굴 포즈마다 하나의 독립된 가우시안 분포를 추정하고 이를 이용하여 각 사람마다 가우시안 혼합 모델(Gaussian Mixture Model)을 구성한다. 본 논문에서는 서로 다른 조명 상태를 가진 얼굴 영상을 처리하기 위해 먼저 입력된 얼굴 영상을 SSR(Single Scale Retinex) 모델을 이용하여 반사율(Reflectance)과 조도(Illuminance)로 분해한다. 반사율은 사전 정의된 범위 안에서 히스토그램 평활화를 수행함으로써 재조정되고 조도는 조명의 변화를 포함하고 있지 않은 영상들으로부터 학습된 매니폴드 모델로 다시 근사된다. 이 두 특징을 결합함으로써 실내 환경이나 실외 환경에서 촬영된 영상에서 효율적으로 얼굴을 추적 및 인식한다. 비디오 기반의 영상으로부터 보다 효율적으로 얼굴을 추적하기 위해 본 논문에서는 구성된 모델의 가중치를 각 프레임마다 이전 프레임의 추적 결과에 의해 EM 알고리즘을 이용하여 갱신함으로써 비디오 영상내의 연속적으로 변화하는 얼굴 포즈를 추정하였다. 본 논문에서 제안된 방법은 실내에서의 다양한 조명환경과 실외의 여러 장소에서 획득한 실험 영상을 이용하여 기존에 연구되어 온 다른 방법에 비해 우수한 성능을 보였다.