최근, 코로나 바이러스 감염증으로 인해 발생한 팬데믹의 영향으로 비대면 서비스에 대한 수요와 발전이 급속도로 진행되고 있는 가운데 중심에 있는 메타버스(Metaverse)에 대한 이목이 집중되고 있다. 가상과 현실을 초월하는 세계를 의미하는 메타버스는 4차 산업혁명 시대에 접어들어 다양한 센싱기술과 3D 재현기술이 융합되어 사용자에게 쉽고 빠르게 다양한 정보를 제공하고 서비스가 가능하다. 특히, 이 가운데 고해상도의 영상촬영이 가능한 무인항공기(UAV) 및 정밀도 높은 LiDAR 센서와 같은 융복합센서의 소형화 및 경제성 증가로 인해 높은 재현도 및 정확도를 가진 3D 공간정보를 획득하여 현실의 쌍둥이를 만들어 시뮬레이션하는 디지털 트윈(Digital-Twin)에 대한 연구가 활발히 진행되고 있다. 또한, 컴퓨터 그래픽 분야의 게임엔진(Game engine)이 강력한 3D 그래픽 재현 및 역학적 연산을 바탕으로 한 시뮬레이션 등이 확장되어 메타버스 엔진으로 발전하고 있다. 본 연구는 무인항공시스템(UAS)과 LiDAR 센서를 융합하여 획득한 정확도 높은 3D 공간정보 데이터를 최근 발표된 메타버스 엔진인 언리얼 엔진을 활용하여 실세계 좌표기반 현실을 반영한 거울세계 형태의 메타버스를 구축하였다. 이후, 다양한 공공데이터를 기반으로 사용자를 위한 공간정보 컨텐츠 및 시뮬레이션을 구축하여 재현 정확도를 검증하고, 이를 통해 보다 실감나고 공간정보 활용성이 높은 메타버스 구축에 대하여 고찰하였다. 또한, 언리얼 엔진을 통해 사용자가 직관적이고 쉽게 접근할 수 있는 메타버스를 구축할 경우 재현도 높은 좌표기반의 3D 공간정보를 통해 다양한 컨텐츠 활용성과 효용성을 확인할 수 있었다.
본 연구에서는 수확벌채에 따른 수목의 뿌리 점착력의 변화와 토양의 포화를 가정한 지표유출의 세 가지 흐름 기법(SFD; Single flow direction, MFD; Multiple flow direction, IFD; Infinite flow direction)을 무한사면 안전율 공식에 적용하여 산사태 발생 예측 모델링의 정확성을 분석하였다. 이를 위해 2020년 8월 집중호우의 영향으로 자연사면과 벌채사면에서 다수의 산사태가 발생한 제천지역을 연구지역으로 선정하였다. 위성영상과 25cm급 항공사진을 이용한 산사태 인벤토리 맵핑 결과, 연구지역 내에서 총 830개소의 산사태 발생원이 확인되었다. 산사태 모델링 결과, 벌채에 따른 뿌리 점착력의 변화를 고려한 경우(MFD: 0.81, IFD: 0.80, SFD: 0.80)가 벌채의 영향을 고려하지 않은 경우(MFD: 0.79, IFD: 0.79, SFD: 0.78)에 비하여 AUROC(Area Under the Receiver Operating Characteristics) 분석에서 정확성이 1.3~2.6% 향상되는 것으로 나타났다. 또한, MFD 알고리즘을 이용한 경우는 다른 알고리즘과 비교하여 AUROC 분석에서 정확성이 최대 1.3% 향상되었다. 이러한 결과는 식생조건의 변화를 고려한 뿌리 점착력의 차등 적용과 지표유출수 흐름기법의 선정이 산사태 예측 모델링에 영향을 미칠 수 있음을 시사한다. 향후 이 연구의 결과는 현지 수문모니터링과 함께 수종별 뿌리 점착력의 특징 및 변화를 고려하여 검증되어야 할 것이다.
본 연구에서는 뇌혈류 신호를 측정할 수 있는 시변자계 기반의 비접촉식 직물센서를 설계하여 뇌혈류 신호 검출 및 감성평가의 가능성을 탐색하고자 하였다. 직물센서는 40 denier의 은사를 30합사 한 후 컴퓨터 기계 자수하여 코일형 센서로 구현하였다. 뇌혈류 측정 실험을 위해 코일형 센서를 경동맥 부위에 부착하고, ECG (Electrocardiogram) 전극과 RSP (Respiration) 측정 벨트를 부착 및 착용하도록 하였으며, 동시에 초음파 진단기기를 사용해 도플러 초음파 검사(Doppler Ultrasonography)를 수행하여 혈류 속도를 측정하였다. 피험자에게 Meta Quest 2를 착용시키고, 실험을 위해 조작된 영상 시각 자극을 보여주면서 혈류 신호를 측정한 후 시각 자극에 대한 감성평가 설문지를 작성하도록 하였다. 측정 결과, 도플러 초음파 검사를 통해 측정된 혈류 속도 신호에 변화가 생길 때 직물센서로 측정한 신호도 함께 변화하는 것으로 나타났다. 이를 통해 코일형 직물센서를 이용하여 뇌혈류활동 신호를 측정할 수 있다는 것을 검증하였다. 또한, 감성평가를 위하여 ECG 신호와 PLL 신호(직물센서 신호)에서 추출한 HRV를 계산해서 비교한 결과, 시각 자극으로 인한 교감신경계와 부교감신경계의 활성화에 따른 비율의 변화에 대해서는 직물센서로 측정한 신호와 ECG 신호를 이용해 계산한 값이 비슷한 경향을 보이는 것으로 나타났다. 결론적으로, 본 연구에서 개발된 시변자계 기반의 코일형 직물 센서를 통해 뇌혈류 변화 측정 및 감성 모니터링이 가능할 것으로 사료된다.
본 연구는 우리나라 대형산불의 진화에 있어 임도(산림도로)의 역할을 검증하고자 하였다. 연구대상지는 그간 발생한 대형산불 중 도로밀도가 가장 높은 지역 중 하나인 강원특별자치도 강릉시에서 발생한 2023년 4월 산불피해지역을 대상으로 하였다. 산불피해지역 범위는 현장확인하였으며, 산불의 피해강도는 Sentinel-2 영상을 통해 분석하였다. 이후, 피해범위 및 강도와 산림도로의 관계를 살펴보았다. 전체 149.1ha의 산불피해지역에 쉽게 접근할 수 있는, 피해지역 경계로부터 50m 이내에 조성된 도로는 약 59.6km로, 인접지역을 포함한 산불피해지역의 도로밀도는 무려 168.9m/ha에 달했다. 도로에 의해 단절된 산림은 모두 83개소로 파편화되어 있었는데, 이들 산림은 모두 비산화에 의한 확산으로 판단할 수 있어, 도로가 산불의 차단선 역할을 하지 못했음이 확인되었다. 진화차량 접근의 용이성에 따른 피해정도를 살펴보기 위해 도로로부터의 거리별 피해강도 분포를 살펴본 결과, 낮은 강도의 피해를 입은 지역은 오히려 도로에서 75m이상 떨어진 곳에서 비율이 대폭 높아짐이 확인되었다. 진화인력의 접근 용이성에 따른 피해정도를 살펴보기 위해 해발고별 피해강도 분포를 살펴본 결과 약한 강도의 피해를 입은지역 비율은 해발고가 높아질수록 늘어난 반면, 강한 강도 이상의 피해지역은 반대로 해발고가 높아질수록 비율이 줄어들었다. 강릉시 난곡동 산불피해지역에서 산림내부 혹은 인접한 도로가 산불진화에 효과적이라는 데이터는 없는 것으로 확인되었다. 이상의 결과는 산림 내 임도밀도를 높이는 것이 산불진화에 효과적이라는 논리와 배치된다. 강릉시 난곡산불지역의 경우 현재 산림청이 주장하는 우리나라 임도밀도인 3.9m/ha에 비해 무려 43배나 높다.
멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.
부족한 하천유출 관측 데이터는 모델 보정 작업을 어렵게 만들어 모델의 성능 향상을 제한한다. 위성 기반 원격탐사 자료는 수문 관련 데이터의 확보에 적극적으로 활용될 수 있으므로 새로운 대안이 될 수 있다. 최근에는 여러 연구를 통하여 기존의 개념적/물리적 모델보다는 인공지능을 이용한 해법이 더 적절하다는 평가를 받고 있다. 본 연구에서는 다양한 순환 신경망들과 의사결정나무 기반 알고리즘들을 결합한 자료 기반 접근 방식을 제안하였다. 또한 인공지능 학습을 위하여 인공위성 원격탐사 정보의 활용성을 조사하였다. 본 연구에서 위성영상은 MODIS와 SMAP의 자료가 사용된다. 공적으로 공개된 25개 유역의 자료를 사용하여 제안된 접근 방식을 검증하였다. 전통적인 지역화 접근법에서 착안하여 모든 유역의 자료를 통합하여 하나의 자료 기반 모델을 학습하는 전략을 채택하였으며, Leave-one-out cross-validation 지역화 설정을 이용하여 하나의 모델이 다양한 유역의 하천유출을 예측함으로써 제안된 접근 방식의 잠재력을 평가하였다. GRU + Light GBM 모델이 대상 유역에 적합한 모델 조합으로 판명되었으며(25개 미계측 유역 일 하천유량 예측 모형효율계수 평균 0.7187) 하천유출이 매우 작은 시기를 제외하면 우수한 미계측 유역의 하천유출 예측 성능을 보여주었다. 인공위성 원격탐사 정보의 영향력은 최대 10% 정도로 파악되었으며, 위성 정보의 추가 적용이 풍수기 또는 평수기보다는 저수기 또는 갈수기의 하천유출 예측에 더 큰 영향을 미쳤다.
목적: 두부 외부에서 두뇌를 직접 자극하는 비침습적 두뇌 자극술인 경두개 자기자극(TMS, transcranial magnetic stimulation)은 특정 두뇌 부위를 자극하여 두뇌 활성을 증가 혹은 감소시킬 수 있다. 특히 반복 TMS(repetitive TMS, 이하 rTMS)는 우울증, 강박장애, 정신분열증 등 일부 신경 정신과적 질환의 새로운 치료법으로서의 가능성이 제시되면서 다양한 연구가 행해지고 있다. 이에 본 연구는 치료 저항성 우울증 환자를 대상으로 rTMS 치료 전후의 국소뇌혈류 변화를 알아보고자 하였다. 대상 및 방법: 1년 이상 적당한 항우울제 투여를 시도하였음에도 불구하고 치료에 반응하지 않았던 치료 저항성 우울증 환자 12명(남: 7, 녀: 5, 나이범위: $19{\sim}52$세, 평균나이: $29.3{\pm}9.3$세)을 대상으로 하여 3주간 15회의 rTMS(우측 전전두엽: 1Hz, 좌측 전전두엽: 20Hz) 치료 시행 전과 치료 후에 Tc-99m ECD SPECT를 얻었다. 치료 전과 후의 차이를 SPM2 소프트웨어를 이용하여 비교하였다.(t=3.14, uncorrected p<0.01, voxel=100) 결과: rTMS 치료 후에 좌측 측두엽 전내측부와 좌측 기저핵 그리고 양측 전전두엽 피질부위에 혈류가 유의하게 증가하였다. 또한 우측 전두엽과 좌측 후두엽에서는 혈류가 유의하게 감소하였다. 결론: 치료 저항성 우울증 환자의 rTMS 치료는 특정 부위 두뇌의 혈류 증가와 감소가 있음을 확인할 수 있었다. 치료 성과 및 개인 특성에 따른 차이에 대한 분석을 시행하고 보다 많은 수의 환자에서 자료가 확보된다면 rTMS 치료의 기전과 우울증의 병태생리를 규명하는데 rTMS-기능 뇌영상 연계 연구가 매우 유용할 것이다.인 PET 연구 절차를 고안하기 위해 고려해야 할 사항들에 대하여 논하였다.TEX>$29.9{\pm}1.8%$, DMF: $7.6{\pm}0.5%$이었다. MEK에서 얻은 $[^{11}C]1$의 비방사능은 98 ($GBq/{\mu}mol$)이다. 각 물질의 질량 분석은 1: m/z 257.3 (M+1), 2: 257.3 (M+1), 3: 271.3 (M+1)이었다. 각 생성물질의 표지효율은 MEK에서 $86.0{\pm}5.5%:5.0{\pm}3.4%:1.5{\pm}1.3%$$([^{11}C]1:[^{11}C]2:[^{11}C]3)$, CHO에서 $59.7{\pm}2.4%:4.7{\pm}3.2%:1.3{\pm}0.5%$, DEK에서 $29.9{\pm}1.8%:2.0{\pm}0.7%:0.3{\pm}0.1%$, DMF에서 $7.6{\pm}0.5%:0.0%:0.0%$이다. 결론: $[^{11}C]1$은 4가지 반응용매 중 MEK 반응용매에서 가장 높은 표지효율을 나타냈다. 부산물인 $[^{11}C]3$은 고성능 액체 크로마토그래피의 자외선, 방사능 검출기와 질량 분석법을 통해 물질을 추정할 수 있었다.의 개선 효과가 있는 것으로 판단되며 지질과산화에 대해서 강한 억제 활성을 나타내는 것을 알 수 있었다. 이러한 결과로 복분자는 생활 습관병의 예방과 개선에 유효한 것으로 사료되었으며, 지질대사와 과산화지표의 검증을 통해 기능성 식품소재로 활용될 수 있음을 보여주었다.로서 역시 CTV 치료계획에서 적게 조사되었다(p=0.005). 기존의 ICRU 치료계획은 잔류종양의 크기가 작은 경우 불필요하게 정상조직에
최근 웹툰, 음원, 동영상, 게임, 교육, 앱 등 많은 콘텐츠 기업에서 콘텐츠 유료화 정책을 추진하고 있으나, 무료 콘텐츠에 익숙한 독자들의 문화적 관성이 온라인 콘텐츠의 유료화 전환에 많은 어려움을 주고 있다. 특히 온라인 뉴스 콘텐츠는 포털 사이트를 통해 무료로 배포되고 있어 유료화에 대한 독자들의 거부감이 다른 온라인 콘텐츠 보다 더욱 심한 실정이다. 이러한 문제 해결을 위해 학계 및 산업계에서 온라인 콘텐츠의 유료화 방안에 대한 연구가 다양한 차원에서 진행되었다. 최근에는 일부 온라인 뉴스 매체를 중심으로 독자들이 자발적으로 마음에 드는 뉴스 콘텐츠에 대해 원하는 만큼의 구독료를 지불하게 하는 Pay-What-You-Want (PWYW) 지불모델을 적용하는 시도가 이뤄지고 있다. 이에 본 연구는 PWYW 모델의 성공적인 정착을 위한 선결요인으로 독자의 자발적 독자구독료 지불행위에 영향을 미치는 온라인 뉴스 콘텐츠의 체계적 속성을 도출하고, 각 속성 및 하위 속성의 상대적 중요도를 비교 분석하였다. 좀 더 구체적으로, 선행연구 분석을 통해 기사제목 유형, 기사 이미지 자극성, 기사 가독성, 기사 유형, 기사 지배적 정서, 기사 내용-이미지 유사성 등 총 여섯 가지의 온라인 뉴스 콘텐츠의 체계적 속성을 도출하였으며, 내용분석(content analysis)을 통해 각 기사의 속성값을 측정하고 이를 기반으로 컨조인트 분석(conjoint analysis)을 실시하여 속성 간 상대적 중요도를 계산 및 검증하였다. PWYW 모델이 적용된 온라인 뉴스 콘텐츠 379개에 대한 컨조인트 분석 결과, 기사 가독성, 기사 내용-이미지 유사성, 기사제목 유형 등의 순으로 자발적 독자구독료에 큰 영향을 주는 것으로 분석된 반면, 기사 유형, 기사 지배적 정서, 기사 이미지 자극성 등은 상대적으로 낮은 중요도를 보이는 것으로 조사되었다. 본 연구는 내용분석과 컨조인트 분석을 동시에 실시하여 온라인 뉴스 콘텐츠에 대한 자발적 지불의도에 영향을 미치는 체계적 요인을 도출하고, 그 상대적 중요도까지 살펴보았다는 점에서 학술적 의의가 있으며, 온라인 뉴스 콘텐츠 제작자 및 사이트 운영자들로 하여금 독자들의 자발적 지불을 유도할 수 있는 가이드라인을 제시하였다는 점에서 그 실무적 의의가 있다.
오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.
목 적: 식도암 방사선치료 시 세기조절방사선치료(Intensity Modulated Radiation Therapy, IMRT) 및 용적세기조절회전치료(Volumetric Modulated Arc Therapy, VMAT)에서 Jaw-Tracking 기법 유 무에 따라 저선량 영역에 대한 주변 정상장기의 용적선량을 분석하여 그 유용성을 평가하고자 한다. 대상 및 방법: 본 원에서 사용하고 있는 선형가속기 VitalBeamTM(Varian Medical System, U.S.A)으로 식도암 방사선치료를 받은 27명을 대상으로 하였으며, 치료계획은 Eclipse(Ver. 13.6 Varian, U.S.A)를 이용하여 Jaw-Tracking(JT)을 사용한 치료계획과 Non Jaw-Tracking(NJT) 치료계획을 수립하였으며, 치료계획용적(Planning Target Volume, PTV)에 빗장위림프절(Supraclavicular Lymph Nodes, SCL)이 포함되어 있는 T자형 PTV를 가진 환자를 대상으로 하였다. 조사범위에 대한 영향을 확인하기 위해 복강(Celiac) 포함 여부로 비교군을 나누었다. 수립된 치료계획의 비교를 위해 손상위험장기는 양측 폐, 심장, 척수를 비교하였으며 Conformity Index(CI), Homogeneity Index(HI)를 비교하였다. 임상적용 검증을 위해 전자포탈영상장치(Electronic Portal Imaging Device, EPID)를 이용하여 Portal Dosimetry를 실시하였고, 선량 영역의 임계치(Threshold)를 10 %, 5 %, 0 %로 매개변수로 설정하여 감마분석을 실시하였다. 결 과: 모든 치료계획은 3 mm / 3 %, 감마통과율 95 % 기준에 대해 Threshold 10 %의 경우 95 % 이상으로 JT, NJT 모두 통과하였으며, IMRT는 Threshold가 5 %, 0 %로 줄어들수록 JT보다 NJT의 값이 1 % 이상 줄어 들었다. IMRT에서 양측 폐의 $V_5$와 $V_{10}$은 JT에서 Celiac을 포함하지 않을 때 최대 14.7 %, 평균 8.5 %, 5.3 % 만큼 감소했고, $D_{mean}$은 $72.3{\pm}51cGy$ 감소하였으며, Celiac을 포함할 때 JT에서 선량감소가 증가하였다. 심장의 $D_{mean}$은 $68.9{\pm}38.5cGy$, 척수의 $D_{max}$는 $39.7{\pm]30.1cGy$만큼 감소하였다. VMAT은 JT기법 사용 시 폐에서 $V_5$ 평균 2.5 % 감소하였고, 심장 및 척수에서 소량 감소하였으며, Celiac 포함 시 JT의 선량감소가 증가하였다. 결 론: 식도암 치료계획에서 IMRT가 JT 사용 시 양측 폐의 $V_5$, $V_{10}$에서 유의미한 감소가 나타났고, 저 선량영역에서 조사범위가 클수록 선량감소가 크게 나타났다. 따라서 식도암 방사선치료에는 IMRT가 VMAT보다 JT 적용 시 더 효과적이며, 저 선량영역에서의 MLC 누설 및 투과선량으로부터 정상장기를 보호할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.