각종 영상매체와 수치영상처리 기술이 발전함에 따라 수치영상을 이용한 대상물의 정량적 또는 정성적 분석에 관한 연구가 활발히 진행되고 있다. 그러나 높은 정확도의 영상해석에 있어 고해상도의 영상획득 시스템에 대한 의존도가 매우 높은 실정이며 이들은 고가의 장비라는 문제점을 안고 있다. 본 연구에서는 저가의 영상획득 시스템에 의해 획득한 다중영상을 강화ㆍ분석하여 최적의 강화조건을 도출하고 이를 적용하여 3차원 정확도 분석을 실시하였다. 저해상도의 원시영상과 최적의 조건에 의해 강화한 영상을 이용하여 평균 3차원 위치오차를 분석한 결과, 강화영상은 원시영상에 비해 10%정도 향상된 정확도를 보였다.
AI영상 기반 건설현장 안전관리 모니터링 시스템 개발 및 적용하는 추세에 다양한 환경변화에 따른 위험 객체 탐지 딥러닝 모델 개발에 많은 연구적 관심이 쏟아지고 있다. 여러 환경 변화요인 중 저조도 조건에서 객체 검출 모델의 정확도는 현저히 감소하며, 저조도 환경을 고려한 학습을 수행하더라도 일관적인 객체 탐지 정확도를 확보할 수 없다. 이에 따라 저조도 영상을 강화하는 영상 전처리 기술의 필요성이 대두된다. 따라서, 본 논문은 취득된 건설 현장 영상 데이터를 활용하여 다양한 딥러닝 기반 저조도 영상 강화 모델(GLADNet, KinD, LLFlow, Zero-DCE)을 학습하고, 모델별 저조도 영상 강화 성능을 비교 검증실험을 진행하였다. 저조도 강화된 영상을 시각적으로 검증하였고, 영상품질 평가 지수(PSNR, SSIM, Delta-E)를 도입하여 정량적으로 분석하였다. 실험 결과, GLADNet의 저조도 영상 강화 성능이 정량·정성적 평가에서 우수한 결과를 보여줬으며, 저조도 영상 강화 모델로 적합한 것으로 분석되었다. 향후 딥러닝 기반 객체 검출 모델에 저조도 영상 강화 기법이 전처리 단계로 적용한다면, 저조도 환경에서 일관된 객체 검출 성능을 확보할 것으로 예상된다.
현재 표준화가 진행중인 SVC(Scalable Video Codec)에는 기존의 FGS방법이 아닌 Cyclic-FGS를 사용하여 영상을 강화하고 있다. 이 Cyclic-FGS 블록간에 Stocking Effect를 줄일 수 있고 넓은 영역을 강화할 수 있다는 장점이 있다. 하지만 널은 영역을 강화하기 때문에 기존의 FGS와 달리 ROI를 강화하는데는 적합하지 않다. 따라서 본 논문에서는 Cyclic-FGS에 적합한 새로운 Ordering 방법을 제안한다. 이 방법을 사용하면 기존의 FGS에서 사용한 Bit-shift방법을 사용하지 않고도 비슷한 효과를 낼 수 있으며, 우리가 원하는 ROI를 강화시킬 수 있다. ROI를 중점적으로 강화를 하다 보면 전체 영상에 대한 화질은 떨어질 수 있다. 그러나 두 가지 모드를 두어서 중점강화 또는 전체영상과 비교해 화질열화가 거의 없는 강화를 할 수 있게 하였다.
언샤프 마스크 기법은 입력 영상에 그 영상의 경계를 추출 한 결과 영상을 더하여 영상의 경계를 강조하는 기법이다. 이 기법은 영상의 경계를 강화하여 화질을 개선시키지만 전체적인 대비 강화에 취약하고 잡음에 민감하여 영상을 거칠게 만든다는 단점이 있다. 멀티 채널 언샤프 마스크는 두 개 이상의 언샤프 마스크 채널을 적용하여 전체 영상에 대한 대비 강화가 가능하고 영상의 거친 느낌을 완화 할 수 있다. 그러나 이 기법은 스케일을 강하게 적용해도 경계가 약한 부분에 대한 강화에 한계가 있다는 단점이 존재한다. 이러한 문제를 해결하기 위해 이 논문에서는 기존 멀티 채널 언샤프 마스크의 선형적인 스케일링 방법에 지수함수를 도입하여 비선형적인 스케일링을 가능하도록 하였다. 실험결과 기존 언샤프 마스크 기법에 비해 영상강화에 세부적인 제어가 가능해서 원하는 영역에 대한 대비를 강화할 수 있었다.
호모몰픽 필터링은 푸리에 변환에 기초를 둔 기법으로 주파수 영역에서 저주파 신호는 약화시키고 고주파 신호는 강화하여 영상의 대비 차를 강화시키는 처리기법이다. 호모몰픽 필터링을 위한 응용 프로그램을 개발하여 인공위성영상과 지구물리 자력탐사 자료를 이미지화한 영상에 시험적으로 적용하여 그 결과를 분석하였다. 영상평활화 기법이나 커널 마스크 처리 등과 같은 영상강화 기법에서는 추출 가능한 경계부의 위치를 변화시키거나 영상의 화소값이 전체 영상을 대상으로 변화시키는 반면에 호모몰픽 필터링은 세부적인 영상 정보의 내용을 선택적으로 강조할 수 있다. 호모몰픽 필터링은 인공위성 영상에서 복잡한 지형지물의 특성을 추출하거나 분리하는 데 효과적인 방법으로 나타났으며 지구물리 영상자료에서 이상대를 조사하는 경우에도 유용하게 적용될 수 있을 것으로 생각된다.
최근 UHDTV(ultra high definition television)가 가정에 보급이 많이 되고 있는 추세지만, UHD급 콘텐츠가 매우 부족한 실정이다. 따라서 저해상도 FHD(full high definition) 영상을 고해상도 영상으로 변환시켜 재활용할 수 있는 초해상화(super-resolution, SR) 기술의 필요성이 커졌다. 그 중, 다층의 레이어로 구성된 다층 선형 매핑(multi-layer linear mappings, MLLM)을 기반으로 하는 제안된 초해상화 기법은 상대적으로 낮은 복잡도로 좋은 품질의 고해상도 영상을 복원할 수 있었다. 최근에는 강화 예측법을 추가하여 복원된 고해상도 영상의 품질을 더 향상시키는 기법이 등장하였는데, 이를 바탕으로 본 논문에서는 제안했었던 MLLM 기법을 위한 강화 예측법 기법을 새롭게 제안한다. 제안하는 초해상화 기법은 기존 MLLM 기법과 딥러닝 기반 초해상화 기법보다 높은 품질의 고해상도 영상을 생성하는 것을 확인하였다.
전산화단층영상 품질 개선을 위해 사용되는 지도학습 기반의 딥러닝 기술은 사전 학습을 위해 많은 양의 데이터를 필요로 하는 단점이 있다. 또한 지도학습 기반의 딥러닝 기술은 학습에 사용된 영상의 특징과 학습된 모델에 입력된 영상의 특징이 다른 경우 영상 내부 구조적 왜곡이 유발되는 한계점이 있다. 본 연구에서는 기존 지도학습 기반 딥러닝 기술의 단점을 보완하고 전산화단층영상의 잡음을 감소시킬 수 있는 심층강화학습 기반 영상화 모델을 개발하였다. 심층강화학습 기반 영상화 모델은 shared, value 및 policy 네트워크로 구성하였으며, 영상 잡음 특징 추출 및 모델의 성능 향상을 위해 합성곱, rectified linear unit(ReLU) 활성화 함수, dilation factor 및 게이트순환유닛을 사용하였다. 또한 기존 지도학습 기반 딥러닝 기술을 통해 획득한 영상의 영상품질 비교를 통해 본 연구에서 개발한 영상화 모델의 성능을 평가하였다. 연구결과 기존 기술에 비해 본 연구에서 개발한 영상화 모델 적용 시 전산화단층영상의 정량적 정확도는 큰 폭으로 향상, 잡음은 큰 폭으로 감소함을 확인하였다. 또한 영상화 모델 학습 시 사용한 영상과 구조적 특징이 다른 영상에 대해서도 잡음 감소 효과를 확인하였다. 따라서 본 연구에서 개발한 심층강화학습 기반 영상화 모델을 통해 전산화단층영상의 구조적 특징을 보전함과 동시에 잡음을 감소시킬 수 있다.
본 논문에서는 강화학습을 이용하여 몰입형 영상의 압축 효율을 향상시키는 기법을 제안한다. 몰입형 영상이란 3DOF+ 영상 혹은 Point Cloud 영상과 같이 사용자가 직접 체험할 수 있는 영상을 의미한다. 또한 몰입형 영상은 그 특성에 의해 방대한 양의 정보를 가지고 있다. 따라서 이를 압축하기 위한 압축 방법들이 연구되고 있으며, 일반적으로 3D 공간의 영상을 2D 공간으로 사영하는 방식을 사용한다. 하지만 이 과정에서 정보가 존재하지 않는 영역이 생성되며 이는 압축 효율 저하의 원인이 된다. 이러한 문제를 해결하기 위하여 영상의 특성을 반영할 수 있도록 강화학습을 통한 채우기 기법을 제안한다. 실험 결과 제안한 기법이 기존 기법에 비해 좋은 성능을 보임을 확인할 수 있다.
본 연구의 목적은 태양 코로나 구조를 분석하기에 적합한 영상처리 기법을 찾는 것이다. 이를 위하여 우리는 IDL(Interactive Data Language)에 내장된 여러 가지 영상처리방법을 SOHO EIT 영상에 적용하였다. 우리는 영상처리를 위하여 단일 영상처리 방법과 2단계 영상 처리 방법을 사용하였다. 단일 영상처리 방법으로 히스토그램 평활화(Equalization), 주파수 필터링, 경계선 강화기법(Sobel, Robert) 등을 사용하였다. 2단계 영상처리 방법은 단일 영상 처리 방법에서 효과적이었던 방법들을 두 가지 이상 순차적으로 적용하는 것이다. 본 연구를 통하여 우리는 2단계 영상처리 방법(예, 저주파 필터 + Sobel + 히스토그램 평활화)이 단일 영상처리 방법 보다 코로나 루프 구조를 잘 보여주는 것을 확인하였다. 이 연구 결과가 태양 코로나 구조 연구에 유용하게 사용될 수 있을 것으로 기대된다.
안저 영상 촬영기술이 발달되며 진단에 사용되는 안저 영상에는 시각적으로 많은 변화가 일어났다. 새로운 촬영 기법인 초광각 안저 영상은 기존 영상에 비해 넓은 범위의 영상을 생성할 수 있다. 촬영 범위가 넓어짐에 따라 이미지에는 왜곡이 발생하고, 이로 인해 안저 영상을 통한 황반 부위 진단에 어려움을 야기하기도 한다. 본 논문에서는 이러한 왜곡을 보정하고 초광각 안저 영상을 기존 안저 영상의 영역으로 변환하는 시스템을 강화학습을 통해 구축한다. 제안하는 방법은 A3C 강화학습법을 사용하며 실험 결과는 제안 방법을 통해 안저 영상을 자동으로 변환할 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.