• Title/Summary/Keyword: 영상 강조

Search Result 785, Processing Time 0.023 seconds

Fault Detection of Ceramic Imaging using Mininimum Filter (최소값 필터를 이용한 세라믹 영상에서의 결함 영역 검출)

  • Lee, Min-Jung;Nam, Ji-Hyo;Oh, Heung-Min;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.511-513
    • /
    • 2016
  • 본 논문에서는 세라믹 영상에서 사람의 눈으로 판단하기 어려운 결함 영역을 검출하기 위해 배경을 제거한 후에 지역 기반 오츠 이진화와 양방향 소벨 마스크를 적용하여 세라믹 영상의 윤곽선을 검출한다. 윤곽선이 검출된 영상을 수평으로 4등분하고, 각각의 영역에서 밝기 값이 변화는 지점을 탐색한다. 탐색된 좌표 중에서 최대 명암도 값을 이용하여 ROI 영역을 추출한다. 결함 영역 검출의 효율성을 높이기 위한 전 단계로 배경을 제거하기 위해 ROI 영역과 최소값 필터가 적용된 ROI 영역 간의 명암도의 차이를 이용하여 배경을 제거한다. 명암도의 차이를 통해 배경이 제거된 ROI 영역에서 개선된 명암 대비 스트레칭 기법을 적용하여 ROI 영역의 명암 대비를 강조한다. 명암이 강조된 ROI 영역에서 10mm, 11mm, 16mm, 22mm 영상의 결함 영역을 검출하기 위해 히스토그램 이진화 기법을 적용하여 결함의 후보 영역을 추출한다. 결함 후보 영역이 검출된 ROI 영역에서 미세 잡음을 제거하기 위해 중간값 필터와 침식과 팽창을 적용한 후에 최종적인 결함 영역을 검출한다. 제안된 방법을 8mm, 10mm, 11mm, 16mm, 22mm 세라믹 영상을 대상으로 실험한 결과, 제안된 검출 방법이 기존의 검출 방법보다 모든 mm 세라믹 영상에서 효과적으로 결함 영역이 검출되는 것을 확인하였다.

  • PDF

Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image ($T_2^*$ and FLAIR) Sequence (뇌의 확산강조 영상에서 b-value의 변화에 따른 신호강도, 현성확산계수에 관한 비교 분석 : 확산강조 에코평면영상($T_2^*$ 및 FLAIR)기법 중심으로)

  • Oh, Jong-Kap;Im, Jung-Yeol
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2009
  • Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in $T_2^*$-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  • PDF

A Study on Super Resolution Image Reconstruction for Effective Spatial Identification

  • Park Jae-Min;Jung Jae-Seung;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.4 s.35
    • /
    • pp.345-354
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method has proven to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper, we applied the super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and are overlapped at high rate. We constructed the observation model between the HR images and LR images applied with the Maximum A Posteriori(MAP) reconstruction method which is one of the major methods in the super resolution grid construction. Based on the MAP method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Automatic Defect Inspection with Adaptive Binarization and Bresenham's Algorithm for Spectacle Lens Products (적응적 이진화 기법과 Bresenham's algorithm을 이용한 안경 렌즈 제품의 자동 흠집 검출)

  • Kim, Kwang Baek;Song, Dong Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1429-1434
    • /
    • 2017
  • In automatic defect detection problem for spectacle lenses, it is important to extract lens area accurately. Many existing detection methods fail to do it due to insufficient minute noise removal. In this paper, we propose an automatic defect detection method using Bresenham algorithm and adaptive binarization strategy. After usual average binarization, we apply Bresenham algorithm that has the power in extracting ellipse shape from image. Then, adaptive binarization strategy is applied to the critical minute noise removal inside the lens area. After noise removal, We can also compute the influence factor of the defect based on the fuzzy logic with two membership functions such as the size of the defect and the distance of the defect from the center of the lens. In experiment, our method successfully extracts defects in 10 out of 12 example images that include CHEMI, MID, HL, HM type lenses.

Alternative Input Lower Weight Information Method Error to Reduce Specific Absorption Rate in MRI (자기공명영상 검사 시 환자정보의 체중을 낮게 입력하여 전자파흡수율을 감소시키는 대안의 오류)

  • Choi, Kwan-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.472-477
    • /
    • 2020
  • The purpose of this study is to correct the error of lower weight input method as an alternative to reduce the specific absorption rate(SAR) in MRI. In order to prove that the SAR values not change according to the weight entered into the patient information, the 50kg phantom is placed in the coil and the input weight is changed from 10 to 100 in 10kg units to compare the SAR values. As a result, T1-weighted images had a SAR rate of 0.2W/kg and T2-weighted images had an average of 0.4W/kg. In conclusions, the SAR does not change according to the weight input by the technician before the scan, a lower weight when inputting patient information cannot be an alternative to reduce the SAR.

Evaluation of Tendency for Characteristics of MRI Brain T2 Weighted Images according to Changing NEX: MRiLab Simulation Study (자기공명영상장치의 뇌 T2 강조 영상에서 여기횟수 변화에 따른 영상 특성의 경향성 평가: MRiLab Simulation 연구)

  • Kim, Nam Young;Kim, Ju Hui;Lim, Jun;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • Recently, magnetic resonance imaging (MRI), which can acquire images with good contrast without exposure to radiation, has been widely used for diagnosis. However, noise that reduces the accuracy of diagnosis is essentially generated when acquiring the MR images, and by adjusting the parameters, the noise problem can be solved to obtain an image with excellent characteristics. Among the parameters, the number of excitation (NEX) can acquire images with excellent characteristics without additional degradation of image characteristics. In contrast, appropriate NEX setting is required since the scan time increases and motion artifacts may occur. Therefore, in this study, after fixing all MRI parameters through the MRiLab simulation program, we tried to evaluate the tendency of image characteristics according to changing NEX through quantitative evaluation of brain T2 weighted images acquired by adjusting only NEX. To evaluate the noise level and similarity of the acquired image, signal to noise ratio (SNR), contrast to noise ratio (CNR), root mean square error (RMSE) and peak signal to noise ratio (PSNR) were calculated. As a result, both noise level and similarity evaluation factors showed improved values as NEX increased, while the increasing width gradually decreased. In conclusion, we demonstrated that an appropriate NEX setting is important because an excessively large NEX does not affect image characteristics improvement and cause motion artifacts due to a long scan.

Diffusion-Weighted Imaging Findings in Patients with Status Epilepticus: Report of Two Cases (경련 중첩증 환자의 확산 강조 영상 소견: 2 증례 보고)

  • Sung Il Jung;Bae Ju Kweon;Keon Ha Kim;Moon Hee Han;Kee-Hyun Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.56-60
    • /
    • 2003
  • We present MR diffusion-weighted imaging (DWI) findings of status epilepticus in two patients. DWI showed a focal or diffuse hyperintensity with decreased apparent diffusion coefficient (ADC) value, indicating cytotoxic edema in th e cerebral hemispheric cortices. The hyperintensities were located in the bilateral temporoparietooccipital areas and insular cortex in one patient, and unilaterally in the temporal lobe in the other patient.

  • PDF

A Study on the DWI and Pathologic Findings of Cancer Cells (암 세포주의 확산강조영상과 병리학적 관계에 관한 연구)

  • Seong, Jae-Gu;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.239-244
    • /
    • 2011
  • In this study, we evaluated diffusion weighted imaging (DWI) to investigate whether the DWI parameters can predict characteristic parameters on pathologic specimens of tumor or not. CFPAC-1 was injected subcutaneously on the back flank of athymic nude mice (n=13) then two tumors were initiated on each mouse (2${\times}$13=26 tumors). The mice were sacrificed to make specimen immediately after initial MR imaging then were compared with the MR image. A dedicated high-field (7T) small-animal MR scanner was used for image acquisitions. A T1 and T2 weighted axial image using RARE technique was acquired to measure the T2 values and tumor size. DWI MR was performed for calculating ADC values. To evaluate tumor cellularity and determine the levels of MVD, tumor cells were excised and processed for H-E staining and immunostaining using CD31. T2 values and ADC values were computed and analyzed for each half of the tumors and compared to the correlated specimens slide. Median ADC within each half of mass was compared to the cellularity and MVD in the correlated area of pathologic slide. The mean of ADC value is $0.7327{\times}10^{-3}$ $mm^2/s$ and standard deviation is $0.1075{\times}10^{-3}$ $mm^2/s$. There is a linear relationship between ADC value and tumor necrosis (R2=0.697, p< 0.001). DW image parameters including the ADC values can be utilized as surrogate markers to assess intratumoral neoangiogenesis and change of the internal structure of tumor cells.

Clinical Utility of Prominent Hypointense Signals in the Draining Veins on Susceptibility-Weighted Imaging in Acute Cerebral Infarct: As a Marker of Penumbra and a Predictor of Prognosis (급성 뇌경색에서 자화율강조영상에서 보이는 현저한 유출정맥 저신호 강도의 임상적 유용성: Penumbra 및 예후 예측인자로서 가능성)

  • Lee, Hyun Sil;Ahn, Kook Jin;Choi, Hyun Seok;Jang, Jin Hee;Jung, So Lyung;Kim, Bum Soo;Yang, Dong Won
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.332-340
    • /
    • 2014
  • Purpose : A relative increase in deoxyhemoglobin levels in hypoperfused tissue can cause prominent hypointense signals in the draining veins (PHSV) within areas of impaired perfusion in susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of SWI in patients with acute cerebral infarction by evaluating PHSV within areas of impaired perfusion and to investigate the usefulness of PHSV in predicting prognosis of cerebral infarction. Materials and Methods: In 18 patients with acute cerebral infarction who underwent brain MRI with diffusion-weighted imaging and SWI and follow-up brain MRI or CT, we reviewed the presence and location of the PHSV within and adjacent to areas of cerebral infarction qualitatively and measured the signal intensity difference ratio of PHSVs to contralateral normal appearing cortical veins quantitatively on SWI. The relationship between the presence of the PHSV and the change in the extent of infarction in follow-up images was analyzed. Results: Of the 18 patients, 10 patients showed progression of the infarction, and 8 patients showed little change on follow- up imaging. On SWI, of the 10 patients with progression 9 patients showed peripheral PHSV and the newly developed infarctions corresponded well to area with peripheral PHSV on initial SWI. Only one patient without peripheral PHSV showed progression of the infarct. The patients with infarction progression revealed significantly higher presence of peripheral PHSV (p=0.0001) and higher mean signal intensity difference ratio (p=0.006) comparing to the patients with little change. Conclusion: SWI can demonstrate a peripheral PHSV as a marker of penumbra and with this finding we can predict the prognosis of acute infarction. The signal intensity difference of PHSV to brain tissue on SWI can be used in predicting prognosis of acute cerebral infarction.

Does the ADC Map have Additional Clinical Significance Compared to the DWI in the Brain Infarction? (뇌경색에서 확산강조영상과 비교하여 현성확산계수 지도의 부가적인 임상적 중요성이 있는가?)

  • Choi, Sunseob;Ha, Dong-Ho;Kang, Myong-Jin;Lee, Jin Hwa;Yoon, Seong Kuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.267-274
    • /
    • 2013
  • Purpose : To re-evaluate additional clinical significance of the apparent diffusion coefficient (ADC) map in the inference of infarction stage, authors studied the evolution patterns of the DWI and the ADC map of the brain infarction. Materials and Methods: In 127 patients with cerebral infarctions, including follow-up checks, 199 studies were performed. They were classified as hourly (117 studies)-, daily (108 studies)-, weekly (62 studies)-based groups. The signal intensity (SI) was measured at the core of the infarction and contralateral area with ROI of 0.3 $cm^2$ or more on the images of the DWI and the ADC map, and calculated the ratios of SI and ADC value of the infarction area / contralateral normal area, and compared the patterns of the change according to the evolution. Results: Infarction was detected as early as 1 hour after the attack, and the ratio of SI in the DWI became over than 2 after 12 hours, which showed a plateau until the 6th day. Thereafter, it decreased slowly to 1 on the 30th day, and changed to lower SI than the surrounding brain. The ratio in the ADC map became 0.46 in 24 hours after the attack, and increased slowly to 1 in the 15th day. Thereafter, it became a higher value than the surrounding brain. Overall, the ratio in the ADC map changed earlier than in the DWI, and the ratio curves showed inverse pattern each other according to the evolution of the infarction. Conclusion: The evolution patterns of infarction on the ADC map showed an inverse curve of DWI curve, which means that the ADC value is accurately predictable from DWI, and the ADC map joined with the DWI seems helpful in the determination of subacute infarction between 15 to 30 days.