현재 1 km 해상도의 Moderate Resolution Imaging Spectroradiometer(MODIS) 총일차생산성(GPP) 영상이 8일 간격으로 제공되고 있다. 본 연구에서 MODIS GPP 산출에 사용되는 입력기상(DAO)자료와 광합성유효복사흡수율(FPAR) 자료의 오차를 정량화 하였고, 이들 오차가 MODIS GPP의 불확실성에 미치는 영향을 분석하였다. 입력자료의 평가를 위해 지상기상관측소의 기상자료를 사용하였고, 구름효과 등을 저감한 FPAR의 시계열을 복원하였다. 평가 결과 입력자료의 오차는 MODIS GPP에서 17% 정도 과대평가되었다. 두 오차 중에서 기상자료의 오차가 주요 원인이었으며, FPAR의 오차는 부차적인 것으로 판명되었다. 다양한 토지피복 중에서 혼효림의 MODIS GPP 오차가 약 20%로 가장 크고, 농경지는 약 11%의 오차를 보였다. 입력자료에 의한 MODIS GPP의 오차는 GPP의 계절변화뿐만 아니라 연간 GPP 변화에도 상이한 결과를 초래하였다. 따라서 MODIS GPP에 내재한 오차는 상당하다고 판단되며, 향후 GPP 모니터링에 응용하기 위해선 상기 기술한 오차 요인들을 저감한 입력자료에 의거해 MODIS GPP를 재가공할 필요가 있다.
3.0 T 이상의 고자장 MRI의 경우 특히 body 영상에서는 전자기파의 특성상 피촬영체 내부의 자장 불균일도가 매우 심하여 부분적으로 SAR(Specific Absorption Ratio)가 인체 허용치 이상으로 높아지는 경우가 있다. 본 연구에서는 3.0 T Body MRI에서 이와 같은 문제점을 극복하기 위한 병렬전송 고주파 코일 (parallel-transmission radio frequency coil)의 element 구조와 동작 방법을 최적화하고 FDTD 시뮬레이션을 통하여 유용성을 검증토록 하였다. 이를 위해 3가지 형태의 전송 고주파 코일 element에 대하여 여러 가지 parameter를 실험 및 시뮬레이션을 통해 비교하였으며 각각의 element에 독립적으로 공급되는 고주파 펄스는 코일 내부의 피촬영체에 적절한 자장의 크기와 초소의 SAR를 가지면서 자장의 균일도를 향상시키는 방향으로 최적화하였다. 예로 3.0 T Body MRI에서 $25cm{\times}8cm$ 코일 요소를 12 채널로 구성하는 방식의 경우 최적화 이전에는 70% 이상의 자장의 불균일도를 보인 반면 최적화 후에는 26% 이하로 개선시킬 수 있었다. 따라서 본 연구에선 제안된 코일구조는 (초)고자장 MRI에도 유용하게 적용될 것으로 판단된다.
상수처리시 응집동역학에 관한 연구를 수행하기 위하여 $FE(NO_3)$$_3.9H_2O$을 응집제로 사용하여 Kaolin현탁액을 응집시키는 실험을 행하였다. 응집 동력학은 응집과정중 입자크기의 증가 을 측정하는 것으로서 응집의 mechanism에 대한 이해와 응집시 사용되는 최적 응집제의 량과 종류 그리고 최적 pH를 선정하는데 효과적으로 사용될 수 있다. 본 실험에서는 기본적 응집동력학에 대한 연구를 토대로 수중의 황산이온이 응집동력학에 미치는 영향에 대하여 고찰하였다. 본 실험에 사용된 각 실험조건들은 일련의 Jar Tests를 통하여 선정되었으며 상수처리시 제기될 수 있는 광범위한 탁도와 pH를 포함하고자 하였다. 본 연구에서는 응집 동력학을 측정하기 위하여 '자동영상분석계(AIA)' 를 이용하여 응집과정중의 입자와 크기분포와 '관상란분석계(PDA)' 를 이용한 응집과정중의 탁도변화에 관한 자료를 상호 비교하였다. 본 실험에서 도출된 결과에 의하면, Kaolin현탁물에 가해진 $10^{-3}M$의 황산이온은 응집과정에 상당히 큰 영향을 초래하였으며 응집된 입자표면의 전위(zeta potential)변하ㅗ에 큰 영향을 주는 것으로 밝혀졌다. 응집과정에 가해진 황산이온은 약산성($\le$ pH 6.8)에서의 응집과정을 크게 향상시키는 것으로 나타났다. 응집 동력학의 효율증진은 황산이온이 첨가됨으로 인하여 FE(III)침전물 형성율의 촉진에 기인한 수중입자의 충돌빈도의 증가에 의한 것으로 규명 되어졌다규명 되어졌다
예비과학교사 교육에서 강의식 수업의 한계를 극복하고, 디지털 네이티브 세대들에게 적합한 학습자 중심의 교육을 위하여 플립러닝 수업을 시도했다. 플립러닝 교수-학습 원리를 일반적인 수업모형(ADDIE)에 적용하여 수업을 계획하고, 학습 자료를 개발했다. 개발된 플립러닝 학습 자료와 수업 설계에 대하여 전문가 패널의 델파이 방법과 타당도 검사를 통해 CVR .75 이상으로 검증 받았다. 플립러닝 수업자료를 과학교육론 강좌에 적용하여 교수 효과를 분석한 결과, 학생들의 학습동기와 흥미, 학습에 대한 자신감을 높이는데 도움이 되었지만, 학생들의 강의 만족도는 이전의 강의식 수업과 비교하여 30% 이상 떨어졌고, 학업 성취도 향상에 대한 자기 확신도 부족했다. 성공적인 플립러닝 수업을 위해서는 교수자-학생 간 의사소통과 개별화 수업이 충분하게 이루어질 수 있는 소인수 학급을 대상으로 해야하며 학습자의 학습 부담을 줄이고, 선행학습 동영상 자료의 접근성을 강화해야 한다.
본 논문에서는 인지학에서 연구되고 있는 동질 연상 기억 현상과 장기 및 단기 기억 강화 조절 기능을 담당하는 해마의 두뇌 원리를 공학적으로 모델링한 MHLA(Modulatory Hippocampus Learning Algorithm)의 개발을 제안한다. 해마에서 중요시 하는 연관된 3단계 조직(DG, CA3, CAl)에 기반한 동질 연상 메모리를 구성하도록 하였으며, 장기 기억 학습에 모듈레이터(modulator)를 추가하여 학습 수렴 속도를 향상시켰다. 해마 구조에서 정보는 3단계 순서에 따라 치아 이랑 영역에서 통계적인 편차를 적용하여 호감도 조정에 따라서 반응 패턴으로 이진화 되고, CA3 영역에서 자기 연상 메모리를 하여 패턴이 재구성이 된다. CA3의 정보를 받는 CAI영역에서는 모듈레이터가 적용되는 신경망에 의해 장기기억 인식에 이용되는 연결n강도의 수렴이 빠르게 학습된다. MHLA의 성능을 측정하기 위하여 포즈 및 표정과 화질 상태에 따라 분류된 얼굴 영상에 PCA(Principal Component Analysis)를 적용하여 특정 벡터들을 계산하 MHLA로 학습한 후, 인식률을 확인 하였다. 실험 결과, 제안한 학습 방법을 다른 방법들과 비교하였을 때, 학습시간비용과 인식률에서 우수함을 확인하였다.
현재 대부분의 국내외 대학과 교육 기관에서는 온라인 학습방법을 채택하고 있다. 이에 본 연구는 전통적인 교수법에 대한 상대적 이점으로 많은 온라인 학습도구를 통한 학습효과를 자연지리학 강좌를 중심으로 정량적으로 평가하고자 하였다. 자연지리학 수강자들을 대상으로 실험을 실시하였으며, 인터넷 상에서 정보의 전파 도구로 널리 사용되고 있는 RSS(Really Simple Syndication) 기반의 Podcasting과 Profcast 소프트웨어 프로그램을 이용하여 생성한 동영상 강의가 온라인 도구로 활용되었고, 전통적인 강의실 수업도 함께 병행하였다. 학습효과를 살펴보기 위해, 수강자들이 작성한 강의평가 자료를 분석하였다. 실험은 2007년 봄학기부터 2008년 봄학기까지 동일한 자연지리학 개론 강좌를 대상으로 실시되었다. 본 연구에서 다루어진 실험의 결과에 의하면 온라인 학습 도구는 학습자들의 학습 효과뿐 아니라 수업과 강사에 대한 태도를 긍정적으로 변화시키는 것으로 나타났다. 또한 단순한 PowerPoint 슬라이드만 제공될 때에 비해 교수자의 음성 녹음이 결합된 강의자료가 학습 동기를 높이는데 더욱 효과적인 것으로 조사되었다. 즉, PowerPoint 슬라이드와 같은 시각적인 강의 자료만 제공되는 경우에는 기존의 강의방식과 학습 효과 면에서 큰 차이를 보이지 않았으나, 시각자료에 강의음성이 결합되었을 때, 인터넷 학습자료에 접근하는 빈도가 증가하고 학업성적 및 수업 출석률이 향상되었다. 연구 결과를 바탕으로 온라인과 교실 학습을 병행한 블랜디드형 교수설계 모델이 제안되었다.
최근에 경험적 지식을 체계화하는 방법으로 사례기반추론(CBR: Case Based Reasoning) 및 규칙기반추론(RBR: Rule Based Reasoning)이 여러 분야에서 이용되고 있다. CBR과 RBR이 각각 활용되기도 하지만 문제 해결의 정확성을 높이기 위해 복합된 형태로 사용되기도 하고, 흑은 효과적으로 문제를 해결하기 위해 문제 해결 단계별로 각각 사용되기도 한다 또한 데이터에서 지식을 추출하기 위한 세부 알고리즘으로는 인공지능과 통계적 분석기법 등이 활발하게 연구 및 적용되고 있다. 본 연구는 모니터의 핵심 부품인 섀도우마스크(Shadow Mask)를 개발하는데 있어 도면 협의부터 설계가지의 과정에 CBR과 RBR을 활용하고 발생되는 데이터를 이용하여 진화(Evolution)하는 지식기반시스템(Knowledge Based System)으로 구축하는 것을 목적으로 하고 있다. 특히 도면 협의시 인터넷상에 웹서버 시스템을 통하여 규격 (User Spec.)을 생성하고 이를 이용하여 자동으로 도면이 설계되도록 하고 저장된 사례들을 공유할 수 있도록 하여 도면 검토 시간이 단축되고 검토의 정확성을 기할 수 있어 실패비용을 감소시켰다. 그리고 실제 설계시 CBR과 RBR을 활용하여 자동설계를 할 수 있게 하였고 현장에서 발생되는 데이터를 지식화하여 유사사례 설계가 가능하도록 하였다. 지식기반시스템은 신속한 도면 검토가 가능하므로 인원 활용이 극대화되고, 섀도우 마스크 설계자와 마스터 패턴 설계자 사이의 원활한 의사소통을 통해 고객과의 신뢰성 확보와 신인도 향상을 기대할 수 있는 효과가 있다. 그리고 고급설계자에게만 의지되어온 것을 어느 정도 해결할 수 있고, 신입설계자에게는 훌륭한 교육시스템이 될 수 있다.한 도구임을 입증하였다는 점에서 큰 의의를 갖는다고 하겠다.운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한
오늘날 활발하게 이루어지고 있는 유비쿼터스 컴퓨팅 관련 기술 연구는 사용자가 시간과 장소에 구애받지 않고 네트워크에 접근해 다양한 컴퓨터 관련 서비스를 제공 받을 수 있는 방법에 초점을 맞추고 있다. 이 처럼 시간과 공간의 한계를 뛰어 넘은 네트워크로의 자유로운 접근은 일상 생활의 패러다임을 바꾸어 놓게 될 것이다. 유비쿼터스 컴퓨팅 기술을 통해 가장 큰 변화가 일어나는 분야는 일반 가정환경에서 일어나는 인텔리전트 홈 네트워크 (Intelligent Home Network) 라고 할 수 있다. 집에 들어오면, 자동으로 문을 열어주고, 불을 켜주며, 놓쳤던 TV 프로그램을 자동으로 녹화해 놓았다가 원하는 시간에 보여주고, 적당한 시간에 목욕물을 미리 받아준다. 또한 집밖으로 나가기 전, 일기예보에 따라 우산을 챙겨주고, 일정을 확인시켜주며 입고 나갈 옷을 골라줄 수도 있다. 이 모든 일들이 유비쿼터스 컴퓨팅 기술이 가져올 인텔리전트 홈 네트워크의 모습이다. 그러나, 모든 사용자에게 효과적인 서비스를 제공하기 위해서는 홈 네트워크 상의 자원 관리에서 일어날 수 있는 에이전트들간의 자원 접근 권한 충돌을 효율적으로 방지할 수 있는 기술이 필요하다. 유비쿼터스 컴퓨팅 환경에서 자원관리 특성은 점유의 연속성, 자원 사이의 연관성, 그리고 자원과 사용자 사 사이의 연계성의 3 가지 특성을 지니고 있다. 본 논문에서는 유비쿼터스 컴퓨팅 환경에서 일어날 수 있는 자원 충돌 상황을 효율적으로 처리하기 위한 자원 협상 방법을 제안한다. 본 방법은 자원 관리 특성을 바탕으로 시간논리에 기반을 둔 자원 선점과 분배 규칙으로 구성된다.트 시스템은 b-Cart를 기반으로 할 것으로 예측할 수 있다.타났다. 또한, 스네이크의 초기 제어점을 얼굴은 44개, 눈은 16개, 입은 24개로 지정하여 MER추출에 성공한 영상에 대해 스네이크 알고리즘을 수행한 결과, 추출된 영역의 오차율은 각각 2.2%, 2.6%, 2.5%로 나타났다.해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data b
본 논문에서는 고성능 HEVC(High Efficiency Video Coding) 부호기를 위한 루프 내 필터의 효율적인 하드웨어 구조를 제안한다. HEVC는 양자화 에러가 발생하는 복원 영상에서 화질을 향상시키기 위해 디블록킹 필터와 SAO(Sample Adaptive Offset)으로 구성된 루프 내 필터를 사용한다. 그러나 루프 내 필터는 추가적인 연산으로 인하여 부호기와 복호기의 복잡도가 증가되는 원인이 된다. 제안하는 루프 내 필터 하드웨어 구조는 수행 사이클 감소를 위해 디블록킹 필터와 SAO를 3단 파이프라인으로 구현되었다. 또한 제안하는 디블록킹 필터는 6단 파이프라인 구조로 구현되었으며, 효율적인 참조 메모리 구조를 위해 새로운 필터링 순서로 수행된다. 제안하는 SAO는 화소들의 처리를 간소화하며 수행 사이클을 감소시키기 위해 한번에 6개의 화소를 병렬 처리된다. 제안하는 루프 내 필터 하드웨어 구조는 Verilog HDL로 설계되었으며, TSMC $0.13{\mu}m$ CMOS 표준 셀 라이브러리를 사용하여 합성한 결과 약 131K개의 게이트로 구현되었다. 또한 164MHz의 동작 주파수에서 4K@60fps의 실시간 처리가 가능하며, 최대 동작 주파수는 416MHz이다.
비젼기반 지능형교통정보시스템(ITS, Intelligent Transportation System) 환경에서 도로영역의 분할이 가장 기초적인 역할을 한다. 따라서 본 논문은 입력영상에서 도로 영역과 하늘 영역을 분할하기 위해 적응적 패턴 추출을 통한 영역분할 방법을 제안한다. 제안된 방법은 첫째, Mean Shift 알고리즘을 이용한 초기분할 단계, 둘째, 정적 패턴매칭 방법에 기반한 후보영역선별 단계, 셋째, 동적 패턴매칭 방법에 기반한 영역확장 단계로 구성된다. 제안된 방법은 적응적 패턴을 현 분할영역의 주변 영역으로부터 추출하여 영역병합에 사용함으로서 보다 신뢰성 높은 영역병합결과를 얻을 수 있다. 제안된 방법의 장점을 평가하기 위해 정적인(static) 패턴만을 사용해서 영역을 병합하는 방법과 비교하였다. 제안된 방법의 실험결과에서는 적응적인 패턴 추출방법을 사용하였을 때가 정적인 패턴 추출에 의한 영역병합 방법보다 8.12%의 성능이 향상됨을 보였다. 제안된 방법은 수시로 변화하는 도로환경에서 안정적으로 도로나 하늘영역을 추출할 수 있으며, 비전기반 지능형교통정보시스템의 핵심적인 역할을 할 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.