• Title/Summary/Keyword: 영상정보시스템

Search Result 6,143, Processing Time 0.04 seconds

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

System Development for Measuring Group Engagement in the Art Center (공연장에서 다중 몰입도 측정을 위한 시스템 개발)

  • Ryu, Joon Mo;Choi, Il Young;Choi, Lee Kwon;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.45-58
    • /
    • 2014
  • The Korean Culture Contents spread out to Worldwide, because the Korean wave is sweeping in the world. The contents stand in the middle of the Korean wave that we are used it. Each country is ongoing to keep their Culture industry improve the national brand and High added value. Performing contents is important factor of arousal in the enterprise industry. To improve high arousal confidence of product and positive attitude by populace is one of important factor by advertiser. Culture contents is the same situation. If culture contents have trusted by everyone, they will give information their around to spread word-of-mouth. So, many researcher study to measure for person's arousal analysis by statistical survey, physiological response, body movement and facial expression. First, Statistical survey has a problem that it is not possible to measure each person's arousal real time and we cannot get good survey result after they watched contents. Second, physiological response should be checked with surround because experimenter sets sensors up their chair or space by each of them. Additionally it is difficult to handle provided amount of information with real time from their sensor. Third, body movement is easy to get their movement from camera but it difficult to set up experimental condition, to measure their body language and to get the meaning. Lastly, many researcher study facial expression. They measures facial expression, eye tracking and face posed. Most of previous studies about arousal and interest are mostly limited to reaction of just one person and they have problems with application multi audiences. They have a particular method, for example they need room light surround, but set limits only one person and special environment condition in the laboratory. Also, we need to measure arousal in the contents, but is difficult to define also it is not easy to collect reaction by audiences immediately. Many audience in the theater watch performance. We suggest the system to measure multi-audience's reaction with real-time during performance. We use difference image analysis method for multi-audience but it weaks a dark field. To overcome dark environment during recoding IR camera can get the photo from dark area. In addition we present Multi-Audience Engagement Index (MAEI) to calculate algorithm which sources from sound, audience' movement and eye tracking value. Algorithm calculates audience arousal from the mobile survey, sound value, audience' reaction and audience eye's tracking. It improves accuracy of Multi-Audience Engagement Index, we compare Multi-Audience Engagement Index with mobile survey. And then it send the result to reporting system and proposal an interested persons. Mobile surveys are easy, fast, and visitors' discomfort can be minimized. Also additional information can be provided mobile advantage. Mobile application to communicate with the database, real-time information on visitors' attitudes focused on the content stored. Database can provide different survey every time based on provided information. The example shown in the survey are as follows: Impressive scene, Satisfied, Touched, Interested, Didn't pay attention and so on. The suggested system is combine as 3 parts. The system consist of three parts, External Device, Server and Internal Device. External Device can record multi-Audience in the dark field with IR camera and sound signal. Also we use survey with mobile application and send the data to ERD Server DB. The Server part's contain contents' data, such as each scene's weights value, group audience weights index, camera control program, algorithm and calculate Multi-Audience Engagement Index. Internal Device presents Multi-Audience Engagement Index with Web UI, print and display field monitor. Our system is test-operated by the Mogencelab in the DMC display exhibition hall which is located in the Sangam Dong, Mapo Gu, Seoul. We have still gotten from visitor daily. If we find this system audience arousal factor with this will be very useful to create contents.

A Study on Improvement of the police disaster crisis management system (경찰의 재난위기관리 개선에 관한 연구)

  • Chun, Yongtae;Kim, Moonkwi
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.556-569
    • /
    • 2015
  • With about 75% of the population of Korea criticizing the government's disaster policy and a failure to respond to large-scale emergency like the Sewol ferry sinking means that there is a deep distrust in the government. In order to prevent dreadful disasters such as the Sewol ferry sinking, it is important to secure a prime time with respect to disaster safety. Improving crisis management skills and managerial role of police officers who are in close proximity to the people is necessary for the success of disaster management. With disaster management as one of the most essential missions of the police, as a part of a national crisis management, a step by step strengthening of the disaster safety management system of the police is necessary, as below. First, at the prevention phase, law enforcement officers were not injected into for profit large-scale assemblies or events, but in the future the involvement, injection should be based on the level of potential risk, rather than profitability. In the past and now, the priortiy was the priority was on traffic flow, traffic communication, however, the paradigm of traffic policy should be changed to a safety-centered policy. To prevent large-scale accidents, police investigators should root out improper routines and illegal construction subcontracting. The police (intelligence) should strengthen efforts to collect intelligence under the subject of "safety". Second, with respect to the preparatory phase, on a survey of police officers, the result showed that 72% of police officers responded that safety management was not related to the job descriptions of the police. This, along with other results, shows that the awareness of disaster safety must be adopted by, or rather changed in the police urgently. The training in disaster safety education should be strengthened. A network of experts (private, administrative, and police) in safety management should be established to take advantage of private resources with regard to crisis situtions. Third, with respect to the response phase, for rapid first responses to occur, a unified communication network should be established, and a real-time video information network should be adopted by the police and installed in the police situation room. Fourth, during the recovery phase, recovery teams should be injected, added and operated to minimize secondary damage.

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.

Development of a Real-Time Mobile GIS using the HBR-Tree (HBR-Tree를 이용한 실시간 모바일 GIS의 개발)

  • Lee, Ki-Yamg;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.73-85
    • /
    • 2004
  • Recently, as the growth of the wireless Internet, PDA and HPC, the focus of research and development related with GIS(Geographic Information System) has been changed to the Real-Time Mobile GIS to service LBS. To offer LBS efficiently, there must be the Real-Time GIS platform that can deal with dynamic status of moving objects and a location index which can deal with the characteristics of location data. Location data can use the same data type(e.g., point) of GIS, but the management of location data is very different. Therefore, in this paper, we studied the Real-Time Mobile GIS using the HBR-tree to manage mass of location data efficiently. The Real-Time Mobile GIS which is developed in this paper consists of the HBR-tree and the Real-Time GIS Platform HBR-tree. we proposed in this paper, is a combined index type of the R-tree and the spatial hash Although location data are updated frequently, update operations are done within the same hash table in the HBR-tree, so it costs less than other tree-based indexes Since the HBR-tree uses the same search mechanism of the R-tree, it is possible to search location data quickly. The Real-Time GIS platform consists of a Real-Time GIS engine that is extended from a main memory database system. a middleware which can transfer spatial, aspatial data to clients and receive location data from clients, and a mobile client which operates on the mobile devices. Especially, this paper described the performance evaluation conducted with practical tests if the HBR-tree and the Real-Time GIS engine respectively.

  • PDF

Improvement Way for Mobile X-ray Examinations by Rule Revision about Safety Management of Diagnosis Radiation Occurrence System (진단용방사선발생장치의 안전관리에 관한 규칙 개정에 따른 이동형 방사선검사의 개선방안)

  • Choi, Jun-Gu;Kim, Gyeong-Su;Kim, Byeong-Gi;Ahn, Nam-Jun;Kim, Hyeong-Sun;Kim, Sang-Geon;Lim, Si-Eun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • A safety management rule of the diagnosis radiation system which opened a court 2006 February 10th was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this study is to minimize injury by radiation that can happen to patients and people around a sick ward when managing mobile X-ray system. This study analyzed sickroom environment of mobile X-ray examination and the statistical data of the Konkuk medical Information System(KIS) and the Picture Archiving Communication System(PACS). This study also investigated patient conditions, infection, relation information and related data, when the sickroom mobile X-ray examination is used. Through data analysis, many problems were expected such as restriction of space side, manpower and expense of business side, satisfaction degree decline of patient and protector of operation side. Therefore, we tried to restrict examination of multi bed sickroom, and to use treatment room in each ward to solve problem mentioned. As a result, the whole sickroom mobile X-ray examination rate decreased to near 50%, and mobile X-ray examination rate for inpatients decreased to more than 85%. This study shows that several attempts we did should be helpful for manpower, patients satisfaction and expenses. Also, they should protect patients in sickroom from unnecessary radiation exposure and could minimize inconvenience of patients and their family members from x-ray examination.

  • PDF

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

A Study on Survey of Improvement of Non Face to Face Education focused on Professor of Disaster Management Field in COVID-19 (코로나19 상황에서 재난분야 교수자를 대상으로 한 비대면 교육의 개선에 관한 조사연구)

  • Park, Jin Chan;Beck, Min Ho
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.640-654
    • /
    • 2021
  • Purpose: Normal education operation was difficult in the national disaster situation of Coronavirus Infection-19. Non-face-to-face education can be an alternative to face to face education, but it is not easy to provide the same level of education. In this study, the professor of disaster management field will identify problems that can occur in the overall operation and progress of non-face-to-face education and seek ways to improve non-face-to-face education. Method: Non-face-to-face real-time education was largely categorized into pre-class, in-class, post-class, and evaluation, and case studies were conducted through the professor's case studies. Result&Conclusion: The results of the survey are as follows: First, pre-class, it was worth considering providing a non-face-to-face educational place for professors, and the need for prior education on non-face-to-face educational equipment and systems was required. In addition, it seems necessary to make sure that education is operated smoothly by giving enough notice on classes and to make efforts to develop non-face-to-face education programs for practical class. Second, communication between professor and learner, and among learners can be an important factor in non-face-to-face mid classes. To this end, it is necessary to actively utilize debate-type classes to lead learners to participate in education and enhance the educational effect through constant interaction. Third, non-face-to-face post classes, policies on the protection of privacy due to video records should be prepared to protect the privacy of professors in advance, and copyright infringement on educational materials should also be considered. In addition, it is necessary to devise various methods for fair and objective evaluation. According to the results of the interview, in the contents, which are components of non-face-to-face education, non-face-to-face education requires detailed plans on the number of students, contents, and curriculum suitable for non-face-to-face education from the design of the education. In the system, it is necessary to give the professor enough time to fully learn and familiarize with the function of the program through pre-education on the program before the professor gives non-face-to-face classes, and to operate the helpdesk, which can thoroughly check the pre-examination before non-face-to-face education and quickly resolve the problem in case of a problem.

Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea (한반도 적설심 재분석자료의 오차 및 불확실성 평가)

  • Jeon, Hyunho;Lee, Seulchan;Lee, Yangwon;Kim, Jinsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.543-551
    • /
    • 2023
  • Snow is an essential climate factor that affects the climate system and surface energy balance, and it also has a crucial role in water balance by providing solid water stored during the winter for spring runoff and groundwater recharge. In this study, statistical analysis of Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and ERA5-Land snow depth data were used to evaluate the applicability in South Korea. The statistical analysis between the Automated Synoptic Observing System (ASOS) ground observation data provided by the Korea Meteorological Administration (KMA) and the reanalysis data showed that LDAPS and ERA5-Land were highly correlated with a correlation coefficient of more than 0.69, but LDAPS showed a large error with an RMSE of 0.79 m. In the case of MERRA-2, the correlation coefficient was lower at 0.17 because the constant value was estimated continuously for some periods, which did not adequately simulate the increase and decrease trend between data. The statistical analysis of LDAPS and ASOS showed high and low performance in the nearby Gangwon Province, where the average snowfall is relatively high, and in the southern region, where the average snowfall is low, respectively. Finally, the error variance between the four independent snow depth data used in this study was calculated through triple collocation (TC), and a merged snow depth data was produced through weighting factors. The reanalyzed data showed the highest error variance in the order of LDAPS, MERRA-2, and ERA5-Land, and LDAPS was given a lower weighting factor due to its higher error variance. In addition, the spatial distribution of ERA5-Land snow depth data showed less variability, so the TC-merged snow depth data showed a similar spatial distribution to MERRA-2, which has a low spatial resolution. Considering the correlation, error, and uncertainty of the data, the ERA5-Land data is suitable for snow-related analysis in South Korea. In addition, it is expected that LDAPS data, which is highly correlated with other data but tends to be overestimated, can be actively utilized for high-resolution representation of regional and climatic diversity if appropriate corrections are performed.

Comparison of 3D Space Perception for the Stereoscopic AR Holography (스테레오 증강현실 홀로그래피에서의 삼차원 공간감 비교)

  • Kim, Minju;Wohn, Kwangyun
    • Journal of the HCI Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • Recently, the use of floating hologram has increased in many different aspects, such as exhibitions, education, advertisements, and so on. Especially, the floating hologram that makes use of half-mirror is widely used. Nevertheless, half-mirror, unfortunately, cannot lead users to the perfect three dimensional hologram experience. Even though it can make the vision look to be up on the air, it does not have the capacity to display itself up on the air, which is the ultimate goal of hologram. In addition, it looks inconsistent when a real object is located behind the half-mirror in order to show the convergence of the two (object and the half-mirror). In this paper, we did the study on comparison of 3D space perception for the stereoscopic AR holography. At first, we applied stereoscopic technology to the half-mirror hologram system for the accurate and realistic AR environment. Then, the users can feel as if the real 3D object behind half-mirror and the reflected virtual image are converged much better in the 3D space. Furthermore, by using depth camera, the location and direction of graphics can be controlled to change depending on the user's point of view. This is the effective way to produce augmented stereoscopic images simply and accurately through half-mirror film without any additional devices. What we saw from the user test were applying 3D images and user interaction leads the users to have 3D spatial awareness and realism more effectively and accurately.

  • PDF