Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.65-68
/
2006
카메라로 촬영한 문서 영상의 분석 및 인식을 위한 적응적 이진화 방법을 제안한다. 먼저 카메라 영상의 화질을 분석하여 정량화하는 방법을 제안한다. 그 후 다양한 화질의 카메라 영상에 대하여 제안한 방법으로 측정한 화질과 그 화질에 적합한 이진화 파라미터간의 상관 관계를 통계적으로 분석한다. 그 후 그들간의 상관 관계를 이용하여 입력 영상의 화질에 적합한 이진화 파라미터를 자동으로 추정하도록 함으로써 화질 변화에 대한 적응력을 강화하였다. 실험을 통해 초점 및 잡영의 상태에 따라 적절한 파라미터를 추정함으로써 화질 변화에 적응하는 결과를 확인하였다.
디지털 영상은 캡처 디바이스를 통해 획득된 후, 처리, 압축, 저장, 전송, 재생산 등의 과정을 거치면서 반드시 왜곡이 수반된다. 이렇게 왜곡된 영상은 인간 지각이 허용할 수 있는 범위 내에서 정확히 재생되어야 한다. 따라서, 영상이 재생되기 전 영상의 화질을 평가할 필요가 있다. 실제 응용에 있어서, 인간의 견해로 영상 화질의 점수를 정하는 주관적 화질평가는 일반적으로 불편하고 시간도 많이 소요되며, 비용이 많이 든다. 예를 들어, 사진, 동영상 등의 영상 콘텐츠를 대규모로 저장하고 있는 클라우드 서비스의 경우, 영상 콘텐츠가 상용으로 서비스되기 전 모든 영상의 화질을 인간이 직접 평가하는 것은 불가능하다. 영상 화질평가(visual quality assessment)에 대한 연구목적은 지각된 영상의 화질을 자동으로 예측하는 측도를 개발하는 것이다. 본고에서는 기존에 제안된 영상 화질평가 기술들을 설명하고, 앞으로의 연구에서 해결해야 할 이슈들을 살펴본다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2006.11a
/
pp.67-70
/
2006
디스플레이 장치와 영상 기술의 발전으로 3D 입체 영상에 대한 관심과 기술적 접근이 어느 때 보다 활발하다. 입체 영상의 경우 통상 복수의 평면 영상을 이용하여 합성하게 되는데 이 과정에서 각 영상의 객관적 화질을 서로 달리 함으로써 주관적 화질을 향상시킬 수 있다는 연구가 진행되어 왔다. 그러나 객관적 화질을 지나치게 달리 하거나 전반적으로 낮은 화질의 영상에서는 경계선이 제대로 재현되지 않아 입체감을 떨어뜨리는 문제가 발생한다. 또한 기존의 연구는 스테레오 영상에 한해서만 위의 가설을 검증하였으나 최근의 입체 영상에 관한 연구는 스테레오 영상뿐만 아니라 다시점 영상에서도 활발히 진행되고 있다. 본 논문에서는 스테레오 영상과 9시점 영상에서의 비대칭 영상 부호화가 주관적 화질에 미치는 영향을 검증하고 구체적으로 어느 정도의 객관적 화질 차이를 유지하는 것이 비대칭 부호화에서 가장 효율적인지를 밝힌다. 또한 기존의 비대칭 영상 부호화와 비교하여 주관적 화질을 개선할 수 있는 더욱 효율적인 알고리듬을 제안한다. 제안되는 알고리듬은 경계선의 강도를 기준으로 매크로블록의 양자화 파라미터를 달리 하여 영상의 경계선을 보호하는 방법으로써 기존의 비대칭 영상 부호화보다 더욱 향상된 주관적 화질을 얻을 수 있다.
In this paper, we propose a multiple classifier combination method based on image degradation modeling to improve recognition performance on low-quality images. Using an image degradation model, it generates a set of classifiers each of which is specialized for a specific image quality. In recognition, it combines the results of the recognizers by weighted averaging to decide the final result. At this time, the weight of each recognizer is dynamically decided from the estimated quality of the input image. It assigns large weight to the recognizer specialized to the estimated quality of the input image, but small weight to other recognizers. As the result, it can effectively adapt to image quality variation. Moreover, being a multiple-classifier system, it shows more reliable performance then the single-classifier system on low-quality images. In the experiment, the proposed multiple-classifier combination method achieved higher recognition rate than multiple-classifier combination systems not considering the image quality or single classifier systems considering the image quality.
Image scaling is used for a variety of real-life applications. In order to evaluate the performance of transform functions, the image quality are compared together before and after processing. For the objective evaluation of the transform functions, the exact criterion of image quality is required, and various aspects approaches are practically performed. However, few researches have been conducted on image quality measurement considering the position of pixels that are skipped or newly generated in the process of the image scaling. Therefore this paper focuses on the objective image quality measurement for positions of skipped or estimated pixels in the image scaling. The proposed method generated new image quality measure considering the positional changes using a conventional measure and evaluated sensitivity about positional changes. Through this experiments, it is observed that conventional image quality measurement is definitely affected by positional changes of a skipped and estimated pixels. It is also confirmed that the proposed method is an objective criterion to represent image quality for positional changes of skipped or estimated pixels. The proposed method can be used as a criterion to evaluate the performance of image restoration or enhancement functions.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.11a
/
pp.36-37
/
2011
깊이 영상은 가상 시점 영상을 합성할 때 사용되는 3차원 거리 정보로 깊이 영상 기반 렌더링에서 가상 시점을 합성할 때 사용한다. 따라서, 깊이 영상 부호화에서는 부호화 효율 못지않게 합성 영상의 화질이 중요하다. 깊이 영상의 화질은 합성된 가상 시점 영상의 화질에 큰 영향을 미친다. 따라서 고화질 깊이 영상이 필요한 경우, 부호화 손실이 적은 무손실 부호화를 사용한다. 하지만, 이와 같은 무손실 부호화 방법은 복호를 통해 원래의 깊이 영상을 그대로 복원할 수 있지만, 압축률이 낮다는 단점이 있다. 본 논문에서는 복호된 영상의 화질과 부호화 비트의 균형을 모두 고려하기 위해 근접 무손실 HEVC(high efficiency video coding)와 향상된 CABAC(context-based adaptive bnary arithmetic coding)을 이용한 새로운 깊이 영상 부호화 방법을 제안한다. 실험을 통해 제안한 방법이 합성된 가상 시점 영상의 화질 손실 없이, 기존의 무손실 및 근접 무손실 방법보다 더 나은 부호화 성능을 제공함을 알 수 있었다.
Adaptive binarization is very important for the camera-based document recognition. This paper proposes a binarization method which can effectively adapt to the variation of image Qualify. Firstly, it analyzes the effect of binarization parameters to the result and proposes a method to measure the image quality. Then, it statistically analyzes the relationship between the image quality and the binarization parameter. Finally, it proposes a binarization method that automatically adapts to the quality of the input image, using the analysis result. The experiment results show that there is a meaningful relationship between the image quality and the binarization parameter, and therefore, the proposed method can effectively adapt to the variation of image quality.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.963-965
/
2021
본 논문에서는 위성 영상과 같은 원격 센싱 영상 등의 저 대비 영상의 화질을 개선하기 위하여 SVD (singular value decomposition)를 이용한 적응적 히스토그램 평활화 기법을 제안한다. 저 대비 영상의 특이값과 히스토그램 평활화 영상의 특이값을 결합하되, 사용자 파라미터를 통해 영상의 화질을 조절할 수 있도록 적응적 화질 개선 기법을 제안한다. 위성 영상을 비롯한 다양한 영상을 대상으로 실험한 결과 제안하는 방법이 기존의 히스토그램 평활화 기법 및 이를 개선한 방법에 비해 GSD (global standard deviation)으로 측정한 객관적 수치 측면에서 우수한 성능을 나타내고, 주관적 화질 측면에서 자연스럽고 영상의 어두운 영역 및 밝은 영역에서의 디테일 보존 성능이 우수함을 확인할 수 있다.
최근 모바일 기기를 위한 카메라 관련 기술이 발전하면서 취득할 수 있는 영상의 화질 또한 크게 향상되고 있다. 그러나, 일상 생활에서 빈번히 발생하는 다양한 실내외 불규칙한 조명 조건 및 저조도 환경은 여전히 영상 화질 저하를 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 널리 연구되고 있는 심층신경망 기반 영상 화질 개선 연구의 최신 동향을 소개하고자 한다. 먼저, 다양한 최적화 기법을 바탕으로 영상 내 조명 성분을 추정하고, 이를 개선하는 방법들에 대해 간략히 설명한다. 또한, 영상 인식, 객체 검출 등에서 뛰어난 성능을 입증한 합성곱 신경망 구조를 기반으로 영상의 잠재적 특징을 효과적으로 검출한 후 이를 바탕으로 개선된 영상을 생성하는 방법에 대해 설명한다. 다양한 데이터셋에 대한 실험 결과를 통해 인공지능 기반 영상 화질 개선의 우수성을 보인다.
Park, Young-Soo;Hur, Nam-Ho;Pyo, Kyung-Soo;Song, Chung-Kun
Journal of Broadcast Engineering
/
v.16
no.2
/
pp.319-330
/
2011
For objective assessment of stereoscopic 3D image quality, we measure quality of left and right image with 2D image quality measurement method. However, this method is inconvenient because that we have to measure quality of left and right image individually. Therefore we propose a method of stereoscopic 3D image quality assessment using one overlaid image with left and right image. Using this method, One can measure quality of stereoscopic 3D image more easily and quickly.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.