• Title/Summary/Keyword: 영상레이더

Search Result 394, Processing Time 0.03 seconds

The Contents of SatDSiG and Its Implications for Korea (독일 위성자료보안법의 내용 및 시사점)

  • JUNG, Yungjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.60-65
    • /
    • 2019
  • TerraSAR-X, launched in June 2007, and TanDEM-X, June 2010, are remote-sensing satellites with 1M resolution that are capable of observing the ground even during the nighttime and poor weather conditions. The two satellites had been developed under a public-private partnership between the German Aerospace Centre and Airbus in the interest of the commercial marketing for German satellite data. However, the data of high-grade earth remote-sensing system, such as those of the satellites, has been produced by a military satellite and thus used under limited circumstances in Germany. Therefore, a legislation to commercialize the German satellite data and to protect its national security is needed. For this, SatDSiG was enacted in December 2007. Thus this article will contain the main contents of SatDSiG and its implication for Korea, which stared to export data of Kompsat 3, 3A and 5 in 2018.

A Study on Variable Conductance Radiator using Liquid Metal for Highly Efficient Satellite Thermal Control (인공위성의 고효율 열제어 구현을 위한 액체금속형 가변 전도율 방열판에 관한 연구)

  • Park, Gwi-Jung;Go, Ji-Seong;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • The observation satellites which uses high heat-dissipating equipment such as synthetic aperture radar (SAR) satellites require a radiator to transmit heat from the equipment into outer space. However, during cold conditions it requires a heater to maintain the temperature of equipment within the allowable minimum limit when it is not in operation. In this study, we proposed a variable conductivity radiator that changes its thermal conductivity value through movement of the liquid metal between two reservoirs based on the temperature condition. This reduces the power consumption of the heater by limiting heat transfer path to the radiator in cold condition, while effectively transferring heat to the radiator during hot condition. The feasibility of the proposed radiator was validated through comparison of the thermal control performance with the conventional fixed conductivity radiator via a thermal analysis.

The Optical Tracking Method of Flight Target using Kalman Filter with DTW (DTW와 Kalman Filter를 결합한 비행표적의 광학추적 방법)

  • Jang, Sukwon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • EOTS(Electro-Optical Tracking System) is utilized in acquiring visual information to assess a guided missile's performance. As the missile travels so fast, it is almost impossible for operator to re-capture the lost target. The RADAR or telemetry data are used to re-capture the lost target however facilities to receive real time data is required, which constrains selection of tracking site. Unlike aforementioned data, pre-calculated nominal trajectory can be used without communication facility. This paper proposes a method to predict lost target's state by employing nominal trajectory. Firstly, observed trajectory and nominal trajectory are compared using DTW and current target's state is predicted. The predicted state is used as observation in Kalman filter's correction phase to predict target's next state. The plausibility of the proposed method is verified by applying on actual missile trajectory.

Channel Attention Module in Convolutional Neural Network and Its Application to SAR Target Recognition Under Limited Angular Diversity Condition (합성곱 신경망의 Channel Attention 모듈 및 제한적인 각도 다양성 조건에서의 SAR 표적영상 식별로의 적용)

  • Park, Ji-Hoon;Seo, Seung-Mo;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.175-186
    • /
    • 2021
  • In the field of automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, it is usually impractical to obtain SAR target images covering a full range of aspect views. When the database consists of SAR target images with limited angular diversity, it can lead to performance degradation of the SAR-ATR system. To address this problem, this paper proposes a deep learning-based method where channel attention modules(CAMs) are inserted to a convolutional neural network(CNN). Motivated by the idea of the squeeze-and-excitation(SE) network, the CAM is considered to help improve recognition performance by selectively emphasizing discriminative features and suppressing ones with less information. After testing various CAM types included in the ResNet18-type base network, the SE CAM and its modified forms are applied to SAR target recognition using MSTAR dataset with different reduction ratios in order to validate recognition performance improvement under the limited angular diversity condition.

A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation (위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

Estimation of discharge for Namneung river basin using satellite precipitation (위성강수를 이용한 남능강 유역 유출량 추정)

  • Joo Hun Kim;Chung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.428-428
    • /
    • 2023
  • 글로벌 위성 기반의 강수량 관측에 대한 역사는 1979년에 Arkin의 의해 제안된 IR(Infra-Red) 방법에 의해 위성으로부터 강우자료를 유도하는 개념이 도입된 이후 1987년 해양에서의 비교적 정확한 강수량 추정이 가능한 다중 채널의 마이크로파(MW) 복사계를 이용한 방법에서 1997년TRMM(Tropical Rainfall Measurement Mission)위성의 PR(Precpipitation Radar)의 레이더를 이용하는 방법, 그리고 2014년 GPM(Global Precipitation Measurement Mission) 핵심 위성(GPM Core Observatory)에 탑재된 Dual PR에 의한 방법으로 위성강수의 정확도를 매우 높여가고 있다(Kim et al. 2013). 한국과 아세안의 경제협력이 증가하면서 국내 ODA 정책에서 아세안은 가장 우선적인 대상이 되었다. 정부는 2011-2015년 기간에 라오스 등 26개 국가를 중점협력국에 포함시켰고, 2021~2025년간 적용될 제3기 중점협력국에 라오스를 포함하고 있다. 본 연구는 위성영상으로부터 유도된 위성강수 자료를 이용하여 라오스의 남능강 유역에 대한홍수량을 추정하는 것을 목적으로 하였다. 분석자료인 위성강수 자료는 GSMaP 위성강수 자료를 이용하였다. 이 자료는 1시간의 시간해상도와 0.1°의 공간해상도를 갖는다. 라오스 남능강 유역 9개 지점의 2019년 8월~9월까지의 총강수량 비교 결과 9개 지점의 1일 관측강우의 경우 유역내 평균 약 699.2mm였고, 위성강수는 425.4mm로 위성강수가 과소추정되는 결과를 보이고 있으나 두 자료간의 결정계수(r2)는 약 0.79의 정확도를 보이는 것으로 분석되었다. 위성강수를 이용한 홍수량 분석 결과 같은 시기에서 남능강 유역 출구점의 첨두유출량은 약 5,786m3/s로 분석되었다. 분석도구는 한국건설기술연구원에서 개발하여 운영중인 GRM 강우-유출 모형을 이용하였다. 향후 위성강수와 지점강수의 조합에 의한 다운스케일링 기법에 대한 연구를 수행하여 계측자료가 부족한 지역에서의 홍수량을 분석하는 연구를 진행할 계획이다.

  • PDF

Calculation of Mean velocity conversion coefficient for Non-contact measurement method (비접촉식 측정방법을 위한 평균유속환산계수 산정)

  • Lee, Tae Hee;Kang, Jong Wan;Min, Sang Ki;Park, Hyung Jae;Lee, Ki Sung;Lee, Sin Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.260-260
    • /
    • 2022
  • 최근 홍수기 유량측정방법은 기존 봉부자를 이용한 접촉식 측정방법에서 영상촬영, 레이더 등 첨단기술을 이용한 비접촉식 표면유속 측정방법으로 변화하고 있다. 비접촉식 측정방법은 각 기술마다 표면유속 측정방법의 차이가 있으나 평균유속환산계수를 적용하여 평균유속을 산정하는 공통적인 과정을 수행한다. 평균유속환산계수는 하천의 각 횡측선 수심-유속분포를 일반적인 분포로 가정하고 표면유속에 0.85를 곱하여 평균유속을 산정한다(Rantz, 1982). 그러나 하천의 측정위치 및 흐름특성에 따라 유속분포가 변화하기 때문에 국내외 많은 연구에서 환산계수의 범위를 0.72에서 1.72까지 제시한 바 있다. 따라서 환산계수 0.85의 일률적인 적용은 실제 유량과 측정 유량의 차이가 발생할 수 있어 측정조건의 적절한 환산계수 산정이 필요하다. 본 연구에서는 20년, 21년 금강의 지류인 봉황천에 위치한 금산군(황풍교) 관측소에서 전자파표면유속계를 이용해 측정한 표면유속과 ADCP를 이용하여 동시 측정한 평균유속의 비교를 통해 환산계수를 산정하였다. 또한 금강 본류의 금산군(제원대교) 관측소에서 저중수위에서 ADCP를 이용하여 측정한 평균유속 분포와 고수위에서 전자파표면유속계로 측정한 표면유속과의 경향성 검토를 통해 평균유속환산계수를 산정하였다. 본 연구에서는 지점의 평균유속환산계수를 단일 값으로 산정하였지만, 추후 하천 흐름특성의 변화를 고려한 평균유속환산계수 산정 기법 개발을 통해 보다 정확한 홍수량을 산정할 수 있을 것으로 판단된다.

  • PDF

Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar (SAR를 이용한 토양수분 및 수문인자 산출 연구동향)

  • CHUNG, Jee-Hun;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.26-67
    • /
    • 2020
  • Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.

Real-Time Traffic Information and Road Sign Recognitions of Circumstance on Expressway for Vehicles in C-ITS Environments (C-ITS 환경에서 차량의 고속도로 주행 시 주변 환경 인지를 위한 실시간 교통정보 및 안내 표지판 인식)

  • Im, Changjae;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.55-69
    • /
    • 2017
  • Recently, the IoT (Internet of Things) environment is being developed rapidly through network which is linked to intellectual objects. Through the IoT, it is possible for human to intercommunicate with objects and objects to objects. Also, the IoT provides artificial intelligent service mixed with knowledge of situational awareness. One of the industries based on the IoT is a car industry. Nowadays, a self-driving vehicle which is not only fuel-efficient, smooth for traffic, but also puts top priority on eventual safety for humans became the most important conversation topic. Since several years ago, a research on the recognition of the surrounding environment for self-driving vehicles using sensors, lidar, camera, and radar techniques has been progressed actively. Currently, based on the WAVE (Wireless Access in Vehicular Environment), the research is being boosted by forming networking between vehicles, vehicle and infrastructures. In this paper, a research on the recognition of a traffic signs on highway was processed as a part of the awareness of the surrounding environment for self-driving vehicles. Through the traffic signs which have features of fixed standard and installation location, we provided a learning theory and a corresponding results of experiment about the way that a vehicle is aware of traffic signs and additional informations on it.

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.