• Title/Summary/Keyword: 영상기반AI

Search Result 253, Processing Time 0.047 seconds

Tool Development for Evaluating Image Quality of Chest X-ray (임상 가이드라인 기반 흉부 X-ray 영상 품질 평가 도구 개발)

  • Nam, Gi-Hyeon;Yoo, Dong-Yeon;Kim, Yang-gon;Sun, Joo-Sung;Lee, Jung-Won
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.589-591
    • /
    • 2022
  • 흉부 X-ray 영상은 폐 질환을 진단하는 기본적인 도구로써 널리 사용되고 있다. 정확한 진단을 위해 흉부 X-ray 영상의 품질을 평가하는 과정을 거쳐야 하는데, 이 과정은 주관적인 기준에 따라 수 작업으로 이루어지기 때문에 많은 시간과 비용이 소요된다. 따라서 본 논문에서는 임상 현장에서 사용되는 흉부 X-ray 영상 화질 평가 가이드라인을 기반으로 인공음영, 포함범위, 환자자세, 흡기정도, 그리고 투과 상태의 5가지 품질 평가를 자동화하는 도구를 제안한다. 제안하는 도구는 품질 판단에 소요되는 시간과 비용을 줄여주고, 더 나아가 흉부 병변 진단을 위한 학습 모델 개발의 양질의 학습 데이터를 선별하는 전처리 과정에 활용될 수 있다.

A study on Overcoming Data Limitations and Representing Uncertainty in AI for Personalized Medical Predictions (개인화된 의료 예측을 위한 AI 기반 불확실성 표현 및 데이터 한계 극복 연구)

  • JuChan Kim;Gyurin Byun;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.608-610
    • /
    • 2023
  • 의료 분야에서 AI 모델의 활용이 증가하고 있지만, 모델의 예측 불확실성을 정확하게 평가하고 표현하는 것이 중요하다. 본 연구는 이러한 문제를 해결하기 위해 AI-driven 방식을 제안하며, 특히 의료 영상 변환 모델에 대한 불확실성 표현과 데이터 한계 극복 방법론을 제안한다. 제안된 AI-driven 안저영상 변환 모델은 기존 GAN과는 다르게 구조가 이루어져 있으며, 신뢰도가 낮은 영역을 구분하고 시각화하여 표현할 수 있다. 실험 결과, 제안된 방법은 기존 모델과 비교하여 영상 변환 성능이 크게 향상되었으며, 불확실성에 대한 정확도 평가에서도 AI-driven 방식이 높은 성능을 보인다. 결론적으로, 본 연구는 AI-driven 방식을 통해 의료 AI에서의 불확실성 표현의 가능성을 확인하였으며, 이 방식이 데이터의 한계와 불확실성을 극복할 수 있을 것으로 기대된다.

News Image Generation AI (뉴스 영상 생성 AI)

  • Kim, Seon-moo;Lee, Seung-jun;Lee, Jeong-won;Park, Ji Hye
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.955-957
    • /
    • 2022
  • 뉴스와 같은 정확한 정보를 제공하는 영상을 제작하는 과정은 많은 자원과 시간이 소요된다. 작성된 기사를 이용하더라도 영상 기반의 뉴스를 제작하는 것은 인적, 시간적인 자원의 투여가 불가피하다. 뉴스를 송출하기 위해 소요되는 시간을 줄이기에 현실적으로 어렵다. 따라서 우리는 이러한 문제를 해결하고 빠른 뉴스 영상 제공이 가능한 "뉴스 영상 생성 AI"를 개발하기로 하였다.

GAN-based research for high-resolution medical image generation (GAN 기반 고해상도 의료 영상 생성을 위한 연구)

  • Ko, Jae-Yeong;Cho, Baek-Hwan;Chung, Myung-Jin
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.544-546
    • /
    • 2020
  • 의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도 마다 Scale 의 Gradient 를 동시에 학습하여 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제안된 모델이 양질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.

A Study on the Work Process of Creating AI SORA Videos (AI SORA 동영상 생성 제작의 작업 과정에 관한 고찰)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.827-832
    • /
    • 2024
  • The AI program Sora is a video production model that can be used innovatively and is the starting point of a major paradigm shift in video planning and production in the future. In this paper, through consideration of the characteristics, application, and process of the AI video production program, the characteristics of the AI design video production method were understood, and the production algorithm was considered. The detailed consideration and characteristics of the work creation process for the video graphic AI video generation program that will be intensified every year were examined. Next, the method of generating a customized video with a text prompt and the process of innovative production results different from the previous production method were considered. In addition, the design direction through the generation of AI images was studied through the review of the strengths and weaknesses of the image details of the recently announced AI music video results. By considering the security of the AI generation video Sora and looking at the internal process of the actual AI process, it will be possible to present indicators for the future direction of AI video model production and education along with the direction of the design designer and education system. In the text and conclusion, we analyzed the strengths and weaknesses and future status of OpenAI Sora image, concluded how to apply the Sora model's capabilities, limitations, quality, and human creativity, and presented problems and alternatives through examples of the Sora model's capabilities and limitations to increase human creativity.

Construction of Web-Based Medical Imgage Standard Dataset Conversion and Management System (웹기반 의료영상 표준 데이터셋 변환 및 관리 시스템 구축)

  • Kim, Ji-Eon;Lim, Dong Wook;Yu, Yeong Ju;Noh, Si-Hyeong;Lee, ChungSub;Kim, Tae-Hoon;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.282-284
    • /
    • 2021
  • 최근 4차 산업혁명으로 의료빅데이터 기반으로 한 AI 기술이 급속도로 발전하고 있다. 특히, 의료영상을 기반으로 병변을 탐색, 분활 및 정량화 그리고 자동진단 및 예측 관련된 기술이 AI 제품으로 출시되고 있다. AI 기술개발은 많은 학습데이터가 요구되며, 임상검증에 단일기관에서 2개 이상 기관의 검증이 요구되고 있다. 그러나 아직까지도 단일기관에서 학습용 데이터와 테스트, 검증용 데이터를 달리하여 기술개발에 활용하고 있다. 본 논문은 AI 기술개발에 필요한 영상데이터에 대한 표준화된 데이터셋 변환 및 관리를 위한 시스템에 대해 기술한다. 다기관 데이터를 수집하기 위해서는 각 기관의 의료영상 데이터 수집 및 저장하는 기준이 명확하지 않아 표준화 작업이 필요하다. 제안한 시스템은 기관 또는 다기관 연구 그룹의 의료영상데이터를 표준화하여 저장할 수 있을 뿐만 아니라 의료영상 뷰어 및 의료영상 리스트를 통해 연구자가 원하는 의료영상 데이터 셋을 검색하여 다양한 데이터셋으로 제공할 수 있기 때문에 수집 및 변환 그리고 관리까지 지원할 수 있는 시스템으로 영상기반의 머신러닝 연구에 활력을 불어넣을 수 있을 것으로 기대하고 있다.

Penetration Evaluation for X-ray Images Based on Residual Analysis of Histogram Equalization (히스토그램 평탄화 잔차 분석 기반 X-ray 영상의 투과도 평가 기법)

  • JunYoung Heo;HyeonJin Choi;Dong-Yeon Yoo;Joo-Sung Sun;Jung-Won Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.597-598
    • /
    • 2023
  • X-ray는 촬영 방식의 한계로 진단하기 어려운, 품질 낮은 영상을 다수 발생시킨다. 이러한 저품질 영상은 임상 현장에서의 진단이 어려울 뿐만 아니라, 진단 보조 도구를 개발함에 모델의 성능과 신뢰도를 떨어뜨리는 주요 요소가 된다. 특히 투과도가 낮은 영상은 학습 성능에 악영향을 미친다는 것이 입증된 바 있다. 따라서 본 연구는 투과도가 낮은 영상을 진단에 부적합한 영상으로 정의하여, 이를 분류하는 기법을 제안한다. 제안하는 기법은 민감도 94.9%. 특이도 96.0%의 높은 성능을 보였다.

Image Recognition-based Learning Space Congestion Analysis App Development (영상인식 기반 학습공간 혼잡도 분석 앱 개발)

  • Jungkyun Lee;Youngchan Lee;Minsung Kim;Minseong Cho;Hong Min
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.179-180
    • /
    • 2024
  • 영상에서 객체를 인식하는 다양한 알고리즘이 제안되고 있으며 인식된 결과를 통해 새로운 서비스를 사용자에게 제공하는 사례가 늘어나고 있다. 본 논문에서는 카메라를 탑재한 임베디드 기기에서 영상을 촬영하고 촬영된 영상에서 의자와 사람을 탐지하여 학습공간의 혼잡도를 분석하는 앱을 설계하고 구현하였다. 구현 과정에서 실험을 통해 실시간성 확보 여부와 의자를 통한 빈자리 분할이 가능하다는 것과 앱에서도 모니터링 할 수 있다는 것을 검증하였다.

Urinary Stones Segmentation Model and AI Web Application Development in Abdominal CT Images Through Machine Learning (기계학습을 통한 복부 CT영상에서 요로결석 분할 모델 및 AI 웹 애플리케이션 개발)

  • Lee, Chung-Sub;Lim, Dong-Wook;Noh, Si-Hyeong;Kim, Tae-Hoon;Park, Sung-Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.305-310
    • /
    • 2021
  • Artificial intelligence technology in the medical field initially focused on analysis and algorithm development, but it is gradually changing to web application development for service as a product. This paper describes a Urinary Stone segmentation model in abdominal CT images and an artificial intelligence web application based on it. To implement this, a model was developed using U-Net, a fully-convolutional network-based model of the end-to-end method proposed for the purpose of image segmentation in the medical imaging field. And for web service development, it was developed based on AWS cloud using a Python-based micro web framework called Flask. Finally, the result predicted by the urolithiasis segmentation model by model serving is shown as the result of performing the AI web application service. We expect that our proposed AI web application service will be utilized for screening test.