• 제목/요약/키워드: 영상기반 위치 추정

검색결과 262건 처리시간 0.024초

지능형 영상네트워크 연계형 PTZ카메라 기반 다중 이벤트처리 (PTZ Camera Based Multi Event Processing for Intelligent Video Network)

  • 장일식;안성제;박광영;차재상;박구만
    • 한국통신학회논문지
    • /
    • 제35권11A호
    • /
    • pp.1066-1072
    • /
    • 2010
  • 본 논문에서는 다중 PTZ 카메라 기반의 다중이벤트 처리 감시시스템을 제안하였다. 각각의 PTZ 카메라에는 검출할 이벤트의 종류를 설정할 수 있다. 기존 PTZ 감시 카메라에는 하냐의 카메라가 하나의 이벤트 처리를 하기 때문에 새로운 객체가 발생하여 새로운 이벤트를 설정해야 할 경우 문제가 생기며, 각각의 PTZ 카메라는 감시하는 영역아 정해져 있기 때문에 객체가 감사할 수 없는 곳으로 이동시 추적이 불가능한 문제가 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위하여 하나의 PTZ 카메라에 새로운 객체가 발생했을 때 주변의 PTZ 카메라에서 새로운 객체의 위치 좌표를 추정하여 객체를 감시할 수 있는 감시 시스템을 제안하고, PTZ 카메라의 영역에서 벗어나는 객체에 대한 이벤트 링크를 다시 설정함으로써 객체의 감시가 지속적으로 가능하게 하는 시스템을 제안하였다. 모의실험을 통해 제안 방식의 우수한 성능을 입증하였다.

남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석 (Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir)

  • 장원진;김진욱;김진휘;남귀숙;강의태;박용은;김성준
    • 한국수자원학회논문집
    • /
    • 제56권2호
    • /
    • pp.91-101
    • /
    • 2023
  • 본 연구에서는 담수를 대상으로 녹조의 발생을 모니터링하기 위해 내륙에 위치한 백제보와 남양호의 초분광영상을 이용하여 클로로필-a (Chl-a)의 농도를 추정하였다. 각 유역의 초분광이미지는 2016년부터 2017년까지 백재보에서 항공기로, 2020년부터 2021년까지 남양호에서 드론으로 촬영하였다. 이후, 순열 특성 중요도를 이용하여 Chl-a 농도와 관련성이 높은 30개의 반사 대역을 선택하였으며, 백제보는 400-530, 620-680, 710-730, 760-790 nm, 남양호는 400-430, 655-680, 740-800 nm 구간의 반사도가 선택되었다. 선택된 반사율을 입력자료로 하는 인공 신경망 기반의 Chl-a 산정 모델을 개발하였으며 모형의 성능은 결정계수(R2), 평균제곱근오차(RMSE), 평균절대오차(MAE)로 평가하였다. 유역별 산정모델의 성능은 각각 R2: 0.63, 0.82, RMSE: 9.67, 6.99, MAE: 11.25, 8.48로 나타났다. 본 연구에서 개발된 Chl-a 모델은 향후 담수호 녹조의 최적 관리를 위한 기초 도구로 활용될 수 있을 것으로 기대된다.

동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템 (Augmented Reality System using Planar Natural Feature Detection and Its Tracking)

  • 이아현;이재영;이석한;최종수
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.49-58
    • /
    • 2011
  • 일반적으로 사용되는 마커 기반의 증강현실 시스템은 카메라 입력영상 내에 마커가 항상 존재해야 한다는 제한 때문에 사용자의 접근에 불편을 준다. 때문에 최근 배경 영상에서 취득할 수 있는 객체를 자연 마커로 생성한 시스템이나 배경 영상의 특징을 이용해 기하학적 지도를 작성하여 가상의 객체 정합에 이용한 증강현실 시스템들이 관심을 끌고 있다. 본 논문에서는 카메라 입력 영상에서 동일 평면상에 존재하는 특징들을 검출하고, 이를 추적함으로써 카메라 위치 정보를 추정하는 증강현실 시스템을 제안한다. 또한 특징점 추적에 사용된 추적 방법은 카메라에서 취득한 영상 밖으로 특징점이 벗어날 경우 더 이상 추적할 수 없는 문제점을 가지고 있어, 이를 보완하기 위해 새로운 특징점을 재검출하여 객체의 정합을 유지하는 방법도 제시한다. 제안된 방법은 미리 지정된 마커를 사용하지 않기 때문에 사용자의 접근이 편리하고, 특정한 형태의 마커를 사용하지 않는 다른 시스템보다 비교적 간단하게 구현할 수 있어 다양한 모바일 환경에서 유용하게 이용될 수 있다.

인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법 (A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures)

  • 김항태;송원석;최혁;김태정
    • 정보과학회 논문지
    • /
    • 제42권5호
    • /
    • pp.642-651
    • /
    • 2015
  • 소실점(vanishing point)이란 카메라 렌즈를 통해 3차원 공간을 2차원 영상으로 투영하는 과정에서 평행한 직선들이 수렴하는 점을 의미한다. 소실점 검출은 영상 내의 정보를 이용하여 소실점의 위치를 파악하는 것을 의미하며, 영상 내 지점들의 상대적인 거리를 파악하거나 장면 전체의 3차원 구조를 파악하는데 활용된다. 일반적으로 영상 내 평행한 직선들은 인공 구조물 내에 존재하는 경우가 많으므로 직선 검출 기반 소실점 검출 기법들은 인공 구조물 내의 직선들을 찾아 이들이 수렴하는 점을 소실점으로서 검출하는 것을 목표로 한다. 이 때, 영상 내에서 직선을 검출하기 위하여 먼저 에지 검출(edge detection)을 통해 에지 픽셀을 검출하고 그 결과를 허프 변환(Hough transform)하여 직선들을 찾아낸다. 그러나 각종 텍스쳐 및 노이즈 등 여러 원인들로 인해 위 과정에서 검출된 직선들이 모두 소실점을 지나지는 않는다. 따라서 검출된 직선들로부터 소실점을 정확히 검출하기 위해서는 각 직선에 대하여 소실점을 지날 가능성에 따라 다른 가중치를 부여하는 것이 필요한데 기존의 연구들은 가중치를 동일하게 부여하거나 단순한 수준의 가중치 계산을 적용해 왔다. 본 논문에서는 소실점을 지나는 직선들은 대부분 인공 구조물 내의 직선들임에 착안하여 직선에 가중치를 부여하는 새로운 방법을 제안하고 이를 이용한 소실점 검출 결과를 몇 가지 기존 방법들과 비교하였다. 그 결과, 기존 방법들에 비하여 소실점 추정 오류가 약 65% 감소하였다.

복잡한 환경에서 Grid기반 모폴리지와 방향성 에지 연결을 이용한 차선 검출 기법 (Lane Detection in Complex Environment Using Grid-Based Morphology and Directional Edge-link Pairs)

  • 림청;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.786-792
    • /
    • 2010
  • 본 논문은 복잡한 도로 환경에서 차선을 정확하게 찾는 실시간 차선 검출법을 보인다. 기존의 많은 방법들은 대게 후처리 과정에서 차선 안쪽에 존재하는 잡음을 찾아 차선의 위치를 찾지만, 제안하는 방법은 특징 추출 단계에서 가능한 많은 잡음을 제거하므로 후처리 과정에서 검색 영역을 최소화한다. grid기반 모폴로지 연산은 우선 관심영역을 능동적으로 생성한 후, 모폴로지의 닫기 연산을 통해 에지 들을 연결한다. 그리고 방향성 에지 연결 기법을 통하여 유효한 방향에지를 찾고 사전에 구해진 영상 내 차선의 높이와 두 차선 간의 폭 관계를 이용하여 두 개의 차선을 군집화한다. 마지막으로 차선의 색상은 YUV색상 공간에서 두 개의 연결된 에지 안쪽을 검사하여 Bayesian확률 모델을 사용하여 추정한다. 제안하는 방법의 실험 결과는 다수의 불필요한 에지 군집이 존재하는 복잡한 도로 환경에서 효과적으로 도로 에지를 감별하였으며, 제안하는 알고리즘은 해상도 $320{\times}240$ 영상으로 10ms/frame의 속도에서 약92%의 정확도를 보였다.

신두리 해빈 장기해안지형변화 탐지 및 추정 (Estimates on the Long-term Landform Changes Near Sinduri Beaches)

  • 윤공현;이창경;김경수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1315-1328
    • /
    • 2022
  • 신두리해빈 인근지역은 겨울철 북서풍의 영향으로 인하여 모래언덕을 이룬 전형적인 퇴적지형이다. 그 규모가 방대하고 잘 발달되어 있어 보존가치를 인정받아 현재 천연기념물 제431호로 지정되어 있으며 지형학적 가치 보존 측면에서 꾸준한 모니터링이 필요하다. 본 연구에서는 충청남도 태안군에 위치한 신두리 해안사구의 장기간 지형변화 관측을 위해 약 36년 동안의 항공영상, 드론영상 그리고 드론기반 LiDAR 자료를 사용하여 분석하였다. 이를 위해서 원 자료로부터 생성된 Digital Elevation Model (DEM)을 사용하여 래스터 연산기반의 DEM 차분 기법을 적용하여 각 기간별 표고 및 부피의 변화량을 산정하였다. 또한 각 자료원의 고유오차를 오차전파법칙을 이용하여 확률기반의 부피의 변화량도 산정하였다. 그 결과, 1986년부터 2022년까지 관심영역 A (면적: 17,960 m2)에서는 35,119 m3의 퇴적이 발생하였으며, 관심영역 B (면적: 17,686 m2)에서는 54,954 m3의 퇴적이 발생하였음을 알 수 있었다.

회화적 애니메이션에서 브러시 스트로크의 시간적 일관성을 유지하기 위한 모션 맵 생성 (Motion Map Generation for Maintaining the Temporal Coherence of Brush Strokes in the Painterly Animation)

  • 박영섭;윤경현
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권8호
    • /
    • pp.536-546
    • /
    • 2006
  • 회화적 애니메이션은 비디오 동영상을 이용하여 손으로 그린 듯 한 회화적 느낌을 표현하는 방법이며 프레임 간 브러시 스트로크의 시간적 일관성을 유지하는 것이 가장 중요한 요소이다. 본 논문에서는 프레임 간 브러시 스트로크의 일관성을 유지하기 위한 모션 맵 생성을 제안한다. 모션 맵이란 모션이 발생한 에지 위치를 기준으로 해서 모션 정보를 더함으로써 프레임 간 에지가 움직이는 영역을 말한다. 본 논문에서 사용한 모션 추정 방법은 광류 (optical flow) 방법과 블록 기반 방법을 이용하였으며 여러 가지 모션 추정 방법을 통해서 얻은 모션 정보 ( 방향과 크기 ) 중 신호 대 잡음비 (PSNR)가 가장 큰 방법을 최종 모션 정보로 선택하여 모션 맵을 생성하였다. 생성된 모션 맵은 다음 프레임의 덧칠 부분을 결정해 준다. 손으로 그린 듯 한 회화적 느낌을 표현하면서도 프레임 간 브러시 스트로크의 시간적 일관성을 유지하기 위해서 브러시 스트로크의 방향을 결정해주는 강한 에지에 대해서만 모션 정보를 적용하였다. 또한 다중노출기법과 소스 영상과 캔버스간의 차이 맵을 이용하여 프레임 간 플릭커링 현상을 줄이고자 하였다. 구조적 일관성을 유지하기 위해 국부 기울기 보간법 (local gradient interpolation)을 이용하여 브러시 스트로크 간 방향의 일관성을 유지하였다.

VIIRS를 활용한 산불 피해 범위 추출 방법 연구 (Forest Fire Area Extraction Method Using VIIRS)

  • 채한성;안재성;최진무
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.669-683
    • /
    • 2022
  • 최근 20년간 산불의 빈도와 피해는 증가하는 경향이 있다. 산불에 효과적으로 대응하기 위해 산불 피해 규모와 범위 등 산불피해에 대한 정보를 잘 관리할 필요가 있다. 따라서 본 연구에서는 VIIRS 위성 영상을 이용하여 대형 산불의 피해 범위에 대한 정보를 빠른 주기로 추출하는 방법을 제시하고자 하였다. 이를 위해 2022년 3월 동해안 산불이 발생한 시기에 한반도를 관측한 VIIRS 자료를 확보하여 영상화하였다. VIIRS 영상은 ISODATA 기법을 활용하여 무감독 분류하였다. 이후 그 결과를 연소 지역과 화염의 위치의 관계를 이용하여 재분류하여 산불피해 범위를 추출하였다. 추출 결과는 검증 및 비교자료와 비교하였다. 비교 결과, 대형 산불의 경우 VIIRS 영상을 분류하여 추출한 것이 산불발생자료를 통해 추정한 것보다 더 정확한 것으로 나타났다. 본 연구를 통해 확인한 산불피해 범위 추출 방법은 산불 관리를 위한 피해 범위자료를 만드는 데 사용할 수 있다. 본 연구 방법을 자동화한다면 VIIRS 기반의 일별 산불피해 모니터링이 가능할 수 있을 것으로 기대된다.

항로표지 보호를 위한 디지털 영상기반 해무 강도 측정 알고리즘 (Sea Fog Level Estimation based on Maritime Digital Image for Protection of Aids to Navigation)

  • 유은지;이효찬;조성윤;권기원;임태호
    • 인터넷정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.25-32
    • /
    • 2021
  • 미래 해상 환경 변화에 맞춰 해상 항로표지가 다양한 분야에 걸쳐 활용되며 쓰임이 증대되고 있다. 해상 항로표지는 항행하는 선박의 위치, 방향 및 장애물의 위치를 알려주는 항행보조시설로, 현재는 단순히 선박의 안전 항해를 도울 뿐 아니라, 여러 센서와 카메라를 탑재하여 해양 기상환경을 파악하고 기록하는 수단으로 변모하고 있다. 하지만 주로 선박과의 충돌로 인해 소실되며 특히 해무로 인한 관측 시야 저하로 안전사고가 발생한다. 해무 유입은 항만, 해상교통 등에 위험을 초래하고 시간과 지역에 따라 발생 가능성의 차이가 커 예측이 쉽지 않다. 또한, 전 해역에 분포되어있는 항로표지의 특성상 개별 관리가 어렵다. 이를 해결하고자 본 논문에서는 항로표지에 설치된 카메라에서 촬영한 영상으로 해무 강도를 측정하는 방안을 통하여 해양 기상환경을 파악해 보완하고 날씨로 인한 항로표지 안전사고를 해결하는 것을 목적으로 한다. 설치가 어렵고 높은 비용이 드는 광학 및 온도 센서 대신 항로표지에 설치된 카메라의 일반 영상을 사용하여 해무 강도를 측정한다. 덧붙여 다양한 해역에서의 실시간 해무 파악을 위한 선행 연구로, 안개 모델(Haze Model), Dark Channel Prior(DCP)를 이용해 해무 강도 측정 기준을 제시한다. DCP를 적용한 영상에서 특정 픽셀값의 문턱값(Threshold value)을 설정하고, 이를 기준으로 전체 영상에서 해무가 존재하지 않는 픽셀의 수를 통해 해무 강도를 추정한다. 합성 해무 데이터셋과 실제 해무 동영상을 캡처해 만든 실제 해무 데이터셋으로 해무 강도 측정 여부를 검증했다.

표면분할을 이용한 시차공간상에서의 모델 기반 평면검출 (Model-Based Plane Detection in Disparity Space Using Surface Partitioning)

  • 하홍준;이창훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권10호
    • /
    • pp.465-472
    • /
    • 2015
  • 본 논문에서는 시차공간상의 평면검출 방법을 제안하고 그 성능을 평가한다. 다양한 표면을 평면으로 근사하고 검출함으로써 시차공간에 나타난 장면을 간소화하고 수식화하여 다루기 쉽도록 한다. 또한 시차공간에서 근사적으로 구한 평면은 3차원 공간상에서 실측 크기로 표현 가능하고 장애물 검출 및 카메라 위치 추정에 활용할 수 있다. 먼저 스테레오 매칭 기술을 이용해 두 개의 영상으로부터 2차원 공간상에 좌표쌍마다 시차값을 가지는 시차공간을 생성한다. x 또는 y축의 전체적인 추이를 반영하도록 돕는 선 단순화 기법을 이용하여 시차값의 접선 기울기를 추정한다. 기울기 쌍의 조합에 따라 10개의 라벨을 시차공간의 좌표쌍에 부여한다. 상하좌우 방향으로 인접하고 동일한 라벨을 가지는 좌표쌍을 연결하여 군집을 생성하고 최소자승법을 이용해 각 군집에 대한 평면식을 추정한다. 시차공간 내에서 평면식을 만족하는 점들이 가장 많은 평면을 검출하고 이를 시차공간을 가장 잘 간소화한 N개의 평면으로 선택한다. 평면검출의 성능을 정량적으로 평가하였고 그 결과는 3차원 원뿔과 원통에서 각각 97.9%, 86.6% 품질을 보였다. 스테레오 비전 알고리즘의 성능을 평가하기 위해 대표적으로 이용되는 Middlebury와 KITTI 실험데이터로부터 제안된 평면검출 방법은 훌륭하게 평면을 검출하였다.