• Title/Summary/Keyword: 영구자석분할

Search Result 8, Processing Time 0.033 seconds

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2012
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110kW class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnet design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

Analysis of Thrust Characteristics of Multi-winding LDM (다권선형 LDM의 추력특성 해석)

  • Maeng, In-Jae;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper, to achieve the constant thrust force of the double side moving-magnet type LDM, the new armature winding of the LDM was proposed so as to restrain the saturation of the center yoke without increasing the mass of LDM. According to analyzing the magnetic flux distribution throughout the air-gap of the LDM, the magnet and winding width (1:0.84) was determined. The 2D finite element analysis was performed for force analysis on air-gap.

  • PDF

A Study on the Design of a 130kW-class IPMSM for Propulsion of Tram-Train (트램-트레인 추진용 130kW급 IPMSM 설계 연구)

  • Jeong, Geochul;Park, Chan-Bae;Lee, Hyung-Woo;Lee, Sang-Don;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2016
  • This study considers the design of a 130kW-class IPMSM for propulsion of a Tram-Train. This Tram-Train has a wide range of speed variation. For this reason, this study suggested IPMSM, which has wide speed variation as a motor for propulsion of the Tram-Train, a basic model suitable for the required traction force was designed. IPMSM has different electromagnetic and structural characteristics depending on the shapes of its rotor. Therefore, the suggested model was additionally designed, and by dividing a permanent magnet was changed so as th have a shape with an added bridge. Finally, by analyzing the load characteristics with finite element analysis of the basic and suggested models and by comparing electromagnetic and structural characteristics, a model has been derived that satisfies IPMSM for the propulsion of the Tram-Train.

A study on the Reduction of the Stator iron loss on Permanent Magnet Synchronous Motor for Light Railway Transit Propulsion System (경량전철 추진용 영구자석 동기전동기의 고정자 철손 저감 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.376-380
    • /
    • 2012
  • A study on the iron-loss reduction of 110kW-class Interior Permanent Magnet Synchronous Motor (IPMSM) for Light Railway Transit (LRT) is conducted. In general, the iron loss of IPMSM depends on the characteristics of core material and non-oriented electrical steel is used as a core material of IPMSM. In order to reduce the iron-loss of IPMSM, both non-oriented electrical steel and grain oriented electrical steel are applied as core material. Iron loss of 110kW-class IPMSM can be reduced approximately 40% comparing to an existing IPMSM by applying grain oriented electrical steel to the stator teeth.

Characteristic Analysis of Surface mounted Permanent Magnet Synchronous Motor according to Phase-Separation of Stator (고정자의 상분할에 따른 표면부착형 영구자석 동기전동기 특성 해석)

  • Lee, Seung-Han;Cho, Young-Taek;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.756-757
    • /
    • 2015
  • This paper deals with characteristic analysis of surface mounted permanent magnet synchronous motor according to a phase-separation of stator. The characteristic analysis of designed model is performed by finite element analysis(FEA), and the result are shown that there is no difference between the two models in comparison with a general SPMSM. Finally, this study verifies the feasibility of SPMSM with separated stator core. The experimental data is shown the validity of this paper.

  • PDF

Characteristic Analysis on the Permanent Magnet Synchronous Motor with Segmented Phase Modular Stators (고정자 분할에 따른 영구자석 동기전동기의 특성 해석)

  • Lee, Seung-Han;Cho, Han-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1686-1694
    • /
    • 2015
  • Stator tooth segmentation and back-iron segmentation is key solution to easing the burden of manufacturing process of permanent magnet synchronous motor. The purpose of this paper is the design and characteristic analysis of permanent magnet synchronous motor having the segmented phase modular stators. Using by two-dimensional finite element method, the static/no-load characteristic analysis of the permanent magnet synchronous motor is performed. The analysis has been performed considering the additional air gaps between stator modules. The analysis results were experimentally verified, and the validity of the proposed analysis method and feasibility of the machine was confirmed.

Characteristics Analysis of Double Side Excitation Type Multi-separated LDM (양측 여자형 다분할 LDM의 특성해석)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.64-72
    • /
    • 2002
  • The use of linear DC motor is spreaded according to industrial development. This study was objected to study the analysis of double side excitation LDM with moving magnet type. In this LDM structure, the mover made use of permanent magnet with six pieces so as to large thrust, the stator was bedded for the multi separated type winding to repress the i개n saturation. Also, double side excitation winding is suppressed to thrust ripple with stratification to zigzag type and designed to production for static thrust. Then it is important to ratio of permanent magnet to winding width at multi separate, this paper analyzed to separate to three pieces of 1:1, 1:0.84 and 1:0.5 with width ratio. The analysis method calculated the parameter useful for permeance and magnetic resistance more than FEM of complicated numerical value analysis. Through manufactured experiment system, measurement result of thrust was almost acquired to constant thrust for all displacement.

Reduction of Magnet Eddy Current Loss in 40kW HEV Traction motor by using FEA method (FEA 기법을 이용한 40kw급 HEV용 Traction 모터 Magnet Eddy Current Loss 저감 설계)

  • Kim, Kyung-Su;Lee, Sung-Ho;Cha, Hyun-Rok;Park, Sung-Jun;Lee, Kyu-Seok;Jeon, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.820-821
    • /
    • 2008
  • 본 논문은 FEA 기법을 이용하여 40kW급 HEV용 Traction 모터의 설계 및 고효율화를 위한 회전자 영구자석의 Eddy Current loss 저감 방안에 대한 연구를 수행하였다. 먼저 FEA 기법을 이용하여 40kW급 HEV용 Traction 모터 설계 및 특성해석을 수행하여 FEA 해석기법의 타당성을 확보하였다. 또한 Traction 모터의 손실 저감을 위해 magnet부분의 eddy current loss 저감방안에 대해 논하였으며, FEA 기법을 이용하여 회전자 magnet이 Solid, 1/2, 1/4, 1/14 segments로 나눈 타입에 따른 결과를 비교 분석하였다. 그 결과 magnet형태를 기존의 Solid 타입에서 14segments 타입으로 분할 시, magnet 내부의 current path가 줄어들어 eddy current loss가 가장 많이 저감됨을 알 수 있었으며, 이를 통해 HEV용 traction 모터의 고효율, 고성능화 설계방안을 도출 할 수 있었다.

  • PDF