• Title/Summary/Keyword: 영구앵커

Search Result 28, Processing Time 0.025 seconds

Prediction of Long-term Behavior of Ground Anchor Based on the Field Monitoring Load Data Analysis (현장 하중계 계측자료 분석을 통한 그라운드 앵커의 장기거동 예측)

  • Park, Seong-yeol;Hwang, Bumsik;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.25-35
    • /
    • 2021
  • Recently, the ground anchor method is commonly applied with nail and rock bolt to secure the stability of slopes and structures in Korea. Among them, permanent anchor which is used for long-term stability should secure bearing capacity and durability during the period of use. However, according to recent studies, phenomenon such as deformation to slope and the reduction of residual tensile load over time have been reported along the long-term behavior of the anchors. These problems of reducing residual tensile load are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs. In this study, we identified the factors that affect the tensile load of permanent anchor from a literature study on the domestic and foreign, and investigated the prior studies that analyzed previously conducted load cell monitoring data. Afterwards, using this as basic data, the load cell measurement data collected at the actual site were analyzed to identify the tensile load reduction status of anchors, and the long-term load reduction characteristics were analyzed. Finally, by aggregating the preceding results, proposed a technique to predict the long-term load reduction characteristics of permanent anchors through short-term data to around 100 days after installation.

Comparison Analysis of the Environmental Impact of VSL Anchors and RBanchors Using a Life-Cycle Assessment (LCA) (LCA를 이용한 확공지압형 앵커와 일반 앵커의 환경영향 특성 비교분석)

  • Ahn, Taebong;Lee, Jaewon;Min, Kyoungnam;Lee, Junggwan;Kwon, Yongkyu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.558-566
    • /
    • 2015
  • In this study, quantitative environmental impact assessments of the VSL anchor and RB(Reaming and Bearing) anchor systems were conducted after a life-cycle assessment (LCA). In addition, improvements which reduce the adverse environmental effects of the RB anchor system were confirmed through comparisons with results with a VSL anchor system. Both results showed that water ecotoxicity and global warming are the most important in environmental influences. To determine the effect of reducing the RB anchor system environment, the result was normalized for the environmental impact category. Most items appeared to have been improved with regard to the RB anchor system. The most significant improvement was a 77% decrease in POC levels(photochemical oxidant creation). Greenhouse gas emissions, related to global warming, were decreased by 44%. It is expected that these quantitative environmental impact assessment results will serve as the basis of an anchor system for civil engineering and environmental impact assessments.

Long Term Behavior of Permanent Rock Anchorages in Large Spatial Span Structures (대공간구조물에 시공된 영구앵커의 장기거동)

  • Yoo, Nam-Jae;Kim, Dae-Hak;Park, Byung-Soo;Kim, Jae-Il;Lee, Jong-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.123-135
    • /
    • 2006
  • Most of all, large spatial span structures are the symbol of cities but have to get to supply the purpose of structure simultaneously, therefore their foundations are designed to get rolls of structure support, structure shape maintenance or overturn prevention, buoyancy resistance, etc. Accordingly various type foundations have been introduced, and after anchorage power is introduced for double structures shape maintenance and overturn prevention, change of anchorage power checked in the construction process is reviewed, comparing of playground case. Case1 anchors for the control of horizontal power worked outside hemisphere type roof, Case2 anchors for the overturn prevention of cantilever roof examined in this example. The examination has been executed by the analysis of anchorage power introduction process, related test results and anchorage power monitoring results for 2 examples.

Evaluation of Residual Tensile Load of Field Ground Anchors Based on Long-Term Measurement (현장 그라운드 앵커 장기거동 분석을 통한 잔존긴장력 평가)

  • Park, Seong-yeol;Lee, Sangrae;Jung, Jonghong;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.35-47
    • /
    • 2020
  • For permanent anchors used for slope reinforcement, bearing capacity and durability should be secured during the period of use. However, according to recent domestic and foreign studies, phenomena such as tension fractures, damage to anchorages, deformation and damage to slope and reduction of residual load over time have been reported along the long-term behavior of the anchors. These problems are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs and relevant facility collapse. It is necessary to improve maintenance procedures and methods of ground anchors more practically. In this study, the problems and limitations of domestic maintenance methods were analyzed by conducting a literature study, and the measurement data of load cells installed on the install ground anchors were analyzed to determine the change in the residual load with regard to the elapsed date of the anchors. Based on the results, the effect of the construction conditions of anchors and the soil compositions on the increase and decrease of load were identified.

Ultimate Uplift Capacity of Permanent Anchor Embedded in Weathered Rock (풍화암에 근입된 영구 앵커의 극한인발력)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Jin-Hwang
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to estimate ultimate uplift capacity of permanent anchor which was cast into weathered rock. The ultimate uplift capacity was estimated from the load-displacement curve of four different anchors which have different bond length. The creep test was performed for 15minutes under the maximum load of each step in order to understand the load-transfer property of permanent anchor and to decide which anchor to choose. The destruction range of soil due to the changes in load was estimated by installing dial gauge on the ground which was cast into the weathered rock. Ultimately, the study on the behavior of the anchor case into the weathered rock was performed by comparing and analyzing the estimated result of the UUC obtained by the full scale pull out test in the field with the exsting theoretical and practical results of soil and rock anchor.

  • PDF

Tension Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력저항 앵커의 인장 시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.175-181
    • /
    • 2004
  • This study is about a section where underground water level occurs at the underground 5m depth by the excavation of the ground, as a stream is adjacent to a excavation section of High Speed Railway ${\bigcirc}{\bigcirc}$ Station construction sections and a reservoir being always full of water is located at the left side of the construction section. Therefore this test is executed for the design and construction of buoyance anchors able to permanently prevent buoyance by the underground water level at working and for the stable construction and permanent smooth maintenance of structures. In this test, bar type anchors are divided according to their length and standard to execute test-anchor test, and In spot test, 9 test-anchors test, proof test to construction process, suitability test and acceptance test are executed 4 times to 9 test-anchors by dividing anchors according to the length of permanent anchor, the outer diameter of bar and boring diameter. Standard motion characteristic centering on load transmission and break mechanism of bar-type anchors for the prevention of buoyance will be showed in the thesis.

The Short-term Safety Factor Considering Passive Resistance Effect of Bar Anchor Based on Smart Construction (스마트 건설기반의 강봉앵커 수동저항 효과를 고려한 단기 안전율)

  • Donghyuk Lee;Duhyun Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2024
  • This is an analytical study to confirm the passive resistance effect before post-tensioning of steel bar anchors. When using a steel bar as a permanent anchor, if displacement occurs within the slope even before the head load is applied, the displacement is suppressed by the passive resistance caused by the interaction between the steel bar, grout, and surrounding soil. Accordingly, the shape of the failure surface and changes in the safety factor were examined using limit equilibrium analysis and finite element analysis targeting sites where steel bar anchors were actually applied. It was found that the safety factor of the slope reinforced with steel bar anchors is 2.02 using finite element analysis, which is about 5.9% smaller than 2.14 using limit equilibrium analysis. Also, the location of the failure surface was found to be deeper compared to the unreinforced slope. Likewise, the factor of safety has a 153% and 163% increase using finite element method and limit equilibrium analysis, respectively. In addition, the maximum displacement occurs in the lower unreinforced section within the slope, and the displacement is found to be reduced by 42 to 83% at the location where the steel bar anchors are installed.

Centrifuge Model Analysis on Mooring Line Deformation (닻줄변형에 관한 원심모형해석)

  • Han, Heui-Soo;Cho, Jae-Ho;Chang, Dong-Hun;Jeong, Yeon-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.15-22
    • /
    • 2006
  • Single segmented mooring lines were tested in a geotechnical centrifuge for the purpose of calibrating the analytical solution developed for the analysis and design of various mooring lines associated with underwater drag/permanent anchors. The model mooring lines included steel ball chains and wire cables placed at various depths within the soft clayey seafloor soil. The mooring lines were loaded to preset tensions at the water surface under an elevated acceleration inside the centrifuge to simulate the field stress conditions experienced by the prototype mooring lines. This paper describes the calibration of two factors that are used as part of the input parameters in the analytical solution of mooring lines and considers the effect of chasing wires that were used in the experiment to determine the locations of the mooring lines.