• 제목/요약/키워드: 영과잉

검색결과 125건 처리시간 0.022초

영과잉 공간자료의 분석 (Zero In ated Poisson Model for Spatial Data)

  • 한준희;김창훈
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.231-239
    • /
    • 2015
  • 가산자료(counts data)를 적합 하는 경우 보통 포아송 모형이 가장 먼저 고려된다. 과산포 문제가 있을 경우도 유사 포아송(quasi Poisson) 모형이나 음이항(Negative binomial) 모형으로 대부분 설명이 가능하다. 하지만, 가산자료 중에는 포아송분포를 가정한 기대 빈도 이상으로 많은 0이 관측되는 자료가 있고 이를 영과잉(Zero inflated) 가산 자료라고 부른다. 영과잉 가산자료를 설명하기 위해 영과잉 포아송(ZIP) 모형이나 영과잉 음이항(ZINB) 모형을 이용할 수 있다. 더 나아가 영과잉 가산자료가 공간상관관계까지 있을 경우 영과잉 문제뿐만 아니라 유의할 수 있는 공간효과까지 고려해야하고 이를 위해 혼합효과모형(mixed effects model)이 고려 될 수 있다. 본 연구에서 사용된 2004년 기준 부산시 남성동별 갑상선암 발생자수 자료를 이용하여, 일반선형 포아송모형, 영과잉 포아송모형, 공간 영과잉 포아송모형을 적합하여 비교해보았다.

이변량 영과잉-포아송 분포의 적률 (Moments of the Bivariate Zero-Inflated Poisson Distributions)

  • 김경무;이성호;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.47-56
    • /
    • 1998
  • 영과잉-포아송모형는 포아송분포와 베르누이 분포의 혼합모형으로 볼 수 있다. 최근 기술의 발달로 생산공정에서 불량품이 거의 나타나지 않는 경우가 많아 기존의 포아송 분포 보다 영과잉-포아송 분포가 많이 응용되어 진다. 일변량 영과잉-포아송 분포를 이변량 영과잉-포아송 분포로 확장하는 일은 다변량으로 확장하기 위한 전초작업으로 중요하다. 본 논문에서는 세가지 형태의 이변량 영과잉-포아송 분포를 제시하고 이들 분포의 적률을 구하여보았다. 또한 적률을 이용하여 세가지 분포를 비교하여 보았다.

  • PDF

폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용 (A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data)

  • 서기태;황범석
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.311-325
    • /
    • 2022
  • 0의 값을 과도하게 포함하는 가산자료는 다양한 연구 분야에서 흔히 나타난다. 영과잉 모형은 영과잉 가산자료를 분석하기 위해 가장 일반적으로 사용되는 모형이다. 영과잉 모형에 대한 전통적인 베이지안 추론은 조건부 사후분포의 형태가 폐쇄형 분포로 나타나지 않아 모형 적합 과정이 용이하지 않다는 한계점이 존재했다. 그러나 최근 Pillow와 Scott (2012)과 Polson 등 (2013)이 제안한 폴랴-감마 자료확대전략으로 인해, 로지스틱 회귀모형과 음이항 회귀모형에서 깁스 샘플링을 통한 추론이 가능해지면서, 영과잉 모형에 대한 베이지안 추론이 용이해졌다. 본 논문에서는 베이지안 추론에 기반한 영과잉 음이항 회귀모형을 Min과 Agresti(2005)에서 분석된 약학 연구 자료에 적용해본다. 분석에 사용된 자료는 경시적 영과잉 가산자료로 복잡한 자료 구조를 가지고 있다. 모형 적합 과정에서는 깁스 샘플링을 통한 추론을 수행하기 위해 폴랴-감마 자료확대전략을 사용한다.

이변량 영과잉-포아송모형에서 변화시점에 관한 추론 (Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권2호
    • /
    • pp.319-327
    • /
    • 1999
  • 영과잉-포아송분포는 여러 형태의 불량률을 줄이는 생산공정과정에서 유용하게 이용되어 왔다. 또한 생산공정과정 중 미지의 변화시점 이후 불량률의 변화가 있는지를 알아보는 것은 흥미 있는 일이고 연구된바있다. 만약 불량품들이 서로 두가지 다른 형태의 규격에 의해 발생되었다면, 이는 일변량이 아닌 이변량 영과잉-포아송 분포를 이용해야 할 것이다. 본 논문은 이변량 영과잉-포아송모형에서 어느 미지의 시점 이후 분포의 변화가 있는지를 우도비 검정을 통해 알아본다. 또한 변화가 있다면 변화시점과 그리고 여러 형태의 모수들에 대한 점추정량을 알아보려 한다.

  • PDF

영과잉 음이항회귀 모형을 이용한 보험설계사들의 이직횟수 적합 (Fit of the number of insurance solicitor's turnovers using zero-inflated negative binomial regression)

  • 전희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1087-1097
    • /
    • 2017
  • 본 연구는 계수자료 (count data)를 반응변수로 갖는 포아송회귀 모형, 음이항회귀 모형, 영과잉 포아송회귀 모형, 영과잉 음이항회귀 모형의 4 모형의 비교를 통해 보험 설계사들의 이직횟수 적합을 위한 최적모형을 찾고자 한다. 보험설계사 이직횟수의 분산이 평균보다 큰 과대산포가 존재하고 0인 경우의 비중이 높을 경우에 영과잉 음이항회귀 모형을 적합하는 것이 타당함을 보여주고 보험 설계사들의 이직횟수에 영향을 주는 요인을 규명하고자 한다. 로그우도값, AIC, SBC 등을 고려하여 보험설계사 이직횟수 적합을 최적의 모형은 영과잉 이항모형과 음이항회귀모형의 결합인 영과잉 음이항 모형이 선택되었다. 영과잉 이항모형에 포함된 변수로는 성별, 총 보험설계사 근무연월, 교차모집 설계사 등록, 보유고객 수, 소속회사 유형이었고, 음이항회귀 모형에 포함된 변수로는 직무만족, 조직몰입, 채널경영만족, 총 보험설계사 근무연월, 현 직장에서 근무연월, 소속회사 유형이었다. 영과잉 음이항회귀 모형의 적합결과, 이직횟수에 유의한 영향을 주는 요인으로는 현 직장에서 근무연월, 총 보험설계사 근무연월, 소속회사 유형, 채널경영만족, 직무만족 순으로 나타났다.

조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석 (Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.583-592
    • /
    • 2015
  • 영-과잉(zero-inflation) 현상은 최근 계수(count) 시계열 분석의 주요토픽으로 다루어지고 있다. 본 논문에서는 영-과잉 계수 시계열의 변동성을 연구하고 있다. 기존의 정수형 모형인 INGARCH(integer valued GRACH) 모형에 조건부 포아송 및 조건부 음이항 분포를 사용하여 변동성에 영-과잉 현상을 추가하였다. 모수 추정 방법으로 EM알고리즘을 사용하였으며 국내 콜레라 발생건수에 적용시켜 보았다.

변화시점이 있는 영과잉-포아송모형 (Zero-Inflated Poisson Model with a Change-point)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.1-9
    • /
    • 1998
  • 영과잉-포아송모형에서 변화시점이 있는 경우, 우도비 검정통계량을 이용하여 변화 시점의 유 무에 대한 가설을 검정하였다. 또한 적률 및 최우추정법을 이용하여 변화 시점과 몇가지 흥미있는 모수들을 추정하여 보았다. 이들 추정량을 비교하기 위하여 경험적인 평균제곱오차를 이용하였다. 변화시점이 있는 영과잉-포아송 모형과 변화시점이 없는 포아송 모형의 실례를 자료를 중심으로 설명하였다.

  • PDF

영과잉 회귀모형에 대한 베이지안 분석 (Bayesian Analysis for the Zero-inflated Regression Models)

  • 장학진;강윤회;이수범;김성욱
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.603-613
    • /
    • 2008
  • 셀 수 있는 이산 자료 중에서 일반적인 모형에 비하여 영의 빈도가 과도하게 많이 관측되는 자료가 있다. 이러한 경우에 포아송 또는 음이항회귀모형과 같은 일반적인 회귀모형에 의한 분석은 적절하지 못하다. 본 논문에서는 영과잉 포아송회귀모형과 영과잉 음이항회귀모형에 대하여 베이지안 분석을 하였다. 또한, 마코브 연쇄 몬테카롤로 방법으로 계산한 베이즈 요인을 이용하여 모형선택을 하였다. 실제 교통사고 자료를 분석하여 이론적인 결과들을 뒷받침하였다.

서로 다른 산포를 허용하는 이변량 영과잉 음이항 회귀모형 (Bivariate Zero-Inflated Negative Binomial Regression Model with Heterogeneous Dispersions)

  • 김동석;정슬기;이동희
    • Communications for Statistical Applications and Methods
    • /
    • 제18권5호
    • /
    • pp.571-579
    • /
    • 2011
  • 본 연구에서는 두 반응 변수에 서로 다른 산포를 허용하는 새로운 이변량 영과잉 음이항 회귀모형을 제안하고, Deb과 Trivedi (1997)에 나타난 헬스케어 자료를 이용하여 두 반응변수가 갖는 서로 다른 산포도를 무시한 Wang (2003)이 제안한 이변량 영과잉 음이항 회귀모형과의 효율성을 로그우도와 AIC의 관점에서 비교 하였다. 모형적합결과, 본 연구에서 제안한 모형이 모형선택기준 관점에서 기존모형에 비하여 월등히 우수한 결과를 보여주었다.

랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용 (A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior)

  • 김연경;황범석
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.287-301
    • /
    • 2018
  • 0이 과도하게 많이 나타나는 자료는 여러 다양한 분야에서 흔히 볼 수 있다. 이러한 자료들을 분석할 때 대표적으로 영과잉 포아송 모형이 사용된다. 특히 반응변수들 사이에 상관관계가 존재할 때에는 랜덤효과를 영과잉 포아송 모형에 도입해서 분석해야 한다. 이러한 모형은 주로 빈도론자들의 접근방법으로 분석되어왔는데, 최근에는 베이지안 기법을 사용한 분석도 다양하게 발전되어 왔다. 본 논문에서는 반응변수들 사이에 상관관계가 존재하는 경우 랜덤효과가 포함된 영과잉 포아송 회귀모형을 베이지안 추론 방법을 토대로 제안하였다. 이 모형의 적합성을 판단하기 위해 모의 실험을 통해 랜덤효과를 고려하지 않은 모형과 비교 분석하였다. 또한, 실제 지역사회 건강조사 흡연 자료에 직접 응용하여 그 결과를 살펴보았다.